Search Results

Documents authored by Chabaud, Ulysse


Document
Bosonic Quantum Computational Complexity

Authors: Ulysse Chabaud, Michael Joseph, Saeed Mehraban, and Arsalan Motamedi

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In recent years, quantum computing involving physical systems with continuous degrees of freedom, such as the bosonic quantum states of light, has attracted significant interest. However, a well-defined quantum complexity theory for these bosonic computations over infinite-dimensional Hilbert spaces is missing. In this work, we lay the foundations for such a research program. We introduce natural complexity classes and problems based on bosonic generalizations of BQP, the local Hamiltonian problem, and QMA. We uncover several relationships and subtle differences between standard Boolean classical and discrete-variable quantum complexity classes, and identify outstanding open problems. Our main contributions include the following: 1) Bosonic computations. We show that the power of Gaussian computations up to logspace reductions is equivalent to bounded-error quantum logspace (BQL, characterized by the problem of inverting well-conditioned matrices). More generally, we define classes of continuous-variable quantum polynomial time computations with a bounded probability of error (CVBQP) based on gates generated by polynomial bosonic Hamiltonians and particle-number measurements. Due to the infinite-dimensional Hilbert space, it is not a priori clear whether a decidable upper bound can be obtained for these classes. We identify complete problems for these classes, and we demonstrate a BQP lower bound and an EXPSPACE upper bound by proving bounds on the average energy throughout the computation. We further show that the problem of computing expectation values of polynomial bosonic observables at the output of bosonic quantum circuits using Gaussian and cubic phase gates is in PSPACE. 2) Bosonic ground energy problems. We prove that the problem of deciding whether the spectrum of a bosonic Hamiltonian is bounded from below is co-NP-hard. Furthermore, we show that the problem of finding the minimum energy of a bosonic Hamiltonian critically depends on the non-Gaussian stellar rank of the family of energy-constrained states one optimizes over: for zero stellar rank, i.e., optimizing over Gaussian states, it is NP-complete; for polynomially-bounded stellar rank, it is in QMA; for unbounded stellar rank, it is RE-hard, i.e., undecidable.

Cite as

Ulysse Chabaud, Michael Joseph, Saeed Mehraban, and Arsalan Motamedi. Bosonic Quantum Computational Complexity. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chabaud_et_al:LIPIcs.ITCS.2025.33,
  author =	{Chabaud, Ulysse and Joseph, Michael and Mehraban, Saeed and Motamedi, Arsalan},
  title =	{{Bosonic Quantum Computational Complexity}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{33:1--33:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.33},
  URN =		{urn:nbn:de:0030-drops-226612},
  doi =		{10.4230/LIPIcs.ITCS.2025.33},
  annote =	{Keywords: continuous-variable quantum computing, infinite-dimensional quantum systems, stellar rank, Hamiltonian complexity}
}
Document
Building Trust for Continuous Variable Quantum States

Authors: Ulysse Chabaud, Tom Douce, Frédéric Grosshans, Elham Kashefi, and Damian Markham

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
In this work we develop new methods for the characterisation of continuous variable quantum states using heterodyne measurement in both the trusted and untrusted settings. First, building on quantum state tomography with heterodyne detection, we introduce a reliable method for continuous variable quantum state certification, which directly yields the elements of the density matrix of the state considered with analytical confidence intervals. This method neither needs mathematical reconstruction of the data nor discrete binning of the sample space and uses a single Gaussian measurement setting. Second, beyond quantum state tomography and without its identical copies assumption, we promote our reliable tomography method to a general efficient protocol for verifying continuous variable pure quantum states with Gaussian measurements against fully malicious adversaries, i.e., making no assumptions whatsoever on the state generated by the adversary. These results are obtained using a new analytical estimator for the expected value of any operator acting on a continuous variable quantum state with bounded support over the Fock basis, computed with samples from heterodyne detection of the state.

Cite as

Ulysse Chabaud, Tom Douce, Frédéric Grosshans, Elham Kashefi, and Damian Markham. Building Trust for Continuous Variable Quantum States. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chabaud_et_al:LIPIcs.TQC.2020.3,
  author =	{Chabaud, Ulysse and Douce, Tom and Grosshans, Fr\'{e}d\'{e}ric and Kashefi, Elham and Markham, Damian},
  title =	{{Building Trust for Continuous Variable Quantum States}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.3},
  URN =		{urn:nbn:de:0030-drops-120623},
  doi =		{10.4230/LIPIcs.TQC.2020.3},
  annote =	{Keywords: Continuous variable quantum information, reliable state tomography, certification, verification}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail