Search Results

Documents authored by Chan, Anouck


Document
Learning Effect and Compound Activities in High Multiplicity RCPSP: Application to Satellite Production

Authors: Duc Anh Le, Stéphanie Roussel, Christophe Lecoutre, and Anouck Chan

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
This paper addresses the High Multiplicity Resource-Constrained Project Scheduling Problem (HM-RCPSP), in which multiple projects are performed iteratively while sharing limited resources. We extend this problem by integrating the learning effect, which makes the duration of some activities decrease when they are repeated. Learning effect can be represented by any decreasing function, allowing us to get flexibility in modeling various scenarios. Additionally, we take composition of activities into consideration for reasoning about precedence and resources in a more abstract way. A Constraint Programming model is proposed for this richer problem, including a symmetry-breaking technique applied to some activities. We also present a heuristic-based search strategy. The effectiveness of these solving approaches is evaluated through an experimentation conducted on data concerning real-world satellite assembly lines, as well as on some adapted literature benchmarks. Obtained results demonstrate that our methods serve as robust baselines for addressing this novel problem (denoted by HM-RCPSP/L-C).

Cite as

Duc Anh Le, Stéphanie Roussel, Christophe Lecoutre, and Anouck Chan. Learning Effect and Compound Activities in High Multiplicity RCPSP: Application to Satellite Production. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 18:1-18:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{le_et_al:LIPIcs.CP.2024.18,
  author =	{Le, Duc Anh and Roussel, St\'{e}phanie and Lecoutre, Christophe and Chan, Anouck},
  title =	{{Learning Effect and Compound Activities in High Multiplicity RCPSP: Application to Satellite Production}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{18:1--18:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.18},
  URN =		{urn:nbn:de:0030-drops-207037},
  doi =		{10.4230/LIPIcs.CP.2024.18},
  annote =	{Keywords: High-multiplicity Project Scheduling, Learning Effect, Compound Activities, Satellite Assembly Line, Constraint Programming, Symmetry Breaking}
}
Document
Assembly Line Preliminary Design Optimization for an Aircraft

Authors: Stéphanie Roussel, Thomas Polacsek, and Anouck Chan

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
In the aeronautics industry, each aircraft family has a dedicated manufacturing system. This system is classically designed once the aircraft design is completely finished, which might lead to poor performance. To mitigate this issue, a strategy is to take into account the production system as early as possible in the aircraft design process. In this work, we define the Assembly Line Preliminary Design Problem, which consists in defining, for a given aircraft design, the best assembly line layout and the type and number of machines equipping each workstation. We propose a Constraint Programming encoding for that problem, along with an algorithm based on epsilon constraint for exploring the set of Pareto solutions. We present experiments run on a set of real industrial data. The results show that the approach is promising and offers support to experts in order to compare aircraft designs with each other.

Cite as

Stéphanie Roussel, Thomas Polacsek, and Anouck Chan. Assembly Line Preliminary Design Optimization for an Aircraft. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{roussel_et_al:LIPIcs.CP.2023.32,
  author =	{Roussel, St\'{e}phanie and Polacsek, Thomas and Chan, Anouck},
  title =	{{Assembly Line Preliminary Design Optimization for an Aircraft}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.32},
  URN =		{urn:nbn:de:0030-drops-190690},
  doi =		{10.4230/LIPIcs.CP.2023.32},
  annote =	{Keywords: Assembly line design, Constraint Programming, Multi-objective, Industry 4.0}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail