Search Results

Documents authored by Chauhan, Archit


Document
The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Authors: Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem [Andrea S. LaPaugh and Christos H. Papadimitriou, 1984] known as the EP problem. Nedev [Zhivko Prodanov Nedev, 1999] proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EP problem for classes of H-minor-free directed graphs, where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs [Steven Fortune et al., 1980], though known to be tractable in planar directed graphs [Alexander Schrijver, 1994]. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

Cite as

Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chauhan_et_al:LIPIcs.MFCS.2024.43,
  author =	{Chauhan, Archit and Datta, Samir and Gupta, Chetan and Sharma, Vimal Raj},
  title =	{{The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-205992},
  doi =		{10.4230/LIPIcs.MFCS.2024.43},
  annote =	{Keywords: Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability}
}
Document
Depth-First Search in Directed Planar Graphs, Revisited

Authors: Eric Allender, Archit Chauhan, and Samir Datta

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We present an algorithm for constructing a depth-first search tree in planar digraphs; the algorithm can be implemented in the complexity class AC^1(UL∩co-UL), which is contained in AC². Prior to this (for more than a quarter-century), the fastest uniform deterministic parallel algorithm for this problem was O(log^{10}n) (corresponding to the complexity class AC^{10} ⊆ NC^{11}). We also consider the problem of computing depth-first search trees in other classes of graphs, and obtain additional new upper bounds.

Cite as

Eric Allender, Archit Chauhan, and Samir Datta. Depth-First Search in Directed Planar Graphs, Revisited. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.MFCS.2021.7,
  author =	{Allender, Eric and Chauhan, Archit and Datta, Samir},
  title =	{{Depth-First Search in Directed Planar Graphs, Revisited}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.7},
  URN =		{urn:nbn:de:0030-drops-144478},
  doi =		{10.4230/LIPIcs.MFCS.2021.7},
  annote =	{Keywords: Depth-First Search, Planar Digraphs, Parallel Algorithms, Space-Bounded Complexity Classes}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail