Search Results

Documents authored by Chen, Jiale


Document
Stable Matching with Interviews

Authors: Itai Ashlagi, Jiale Chen, Mohammad Roghani, and Amin Saberi

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In several two-sided markets, including labor and dating, agents typically have limited information about their preferences prior to mutual interactions. This issue can result in matching frictions, as arising in the labor market for medical residencies, where high application rates are followed by a large number of interviews. Yet, the extensive literature on two-sided matching primarily focuses on models where agents know their preferences, leaving the interactions necessary for preference discovery largely overlooked. This paper studies this problem using an algorithmic approach, extending Gale-Shapley’s deferred acceptance to this context. Two algorithms are proposed. The first is an adaptive algorithm that expands upon Gale-Shapley’s deferred acceptance by incorporating interviews between applicants and positions. Similar to deferred acceptance, one side sequentially proposes to the other. However, the order of proposals is carefully chosen to ensure an interim stable matching is found. Furthermore, with high probability, the number of interviews conducted by each applicant or position is limited to O(log² n). In many seasonal markets, interactions occur more simultaneously, consisting of an initial interview phase followed by a clearing stage. We present a non-adaptive algorithm for generating a single stage set of in tiered random markets. The algorithm finds an interim stable matching in such markets while assigning no more than O(log³ n) interviews to each applicant or position.

Cite as

Itai Ashlagi, Jiale Chen, Mohammad Roghani, and Amin Saberi. Stable Matching with Interviews. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ashlagi_et_al:LIPIcs.ITCS.2025.12,
  author =	{Ashlagi, Itai and Chen, Jiale and Roghani, Mohammad and Saberi, Amin},
  title =	{{Stable Matching with Interviews}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.12},
  URN =		{urn:nbn:de:0030-drops-226402},
  doi =		{10.4230/LIPIcs.ITCS.2025.12},
  annote =	{Keywords: Stable Matching, Gale–Shapley Algorithm, Algorithmic Game Theory}
}
Document
Fair Grading Algorithms for Randomized Exams

Authors: Jiale Chen, Jason Hartline, and Onno Zoeter

Published in: LIPIcs, Volume 256, 4th Symposium on Foundations of Responsible Computing (FORC 2023)


Abstract
This paper studies grading algorithms for randomized exams. In a randomized exam, each student is asked a small number of random questions from a large question bank. The predominant grading rule is simple averaging, i.e., calculating grades by averaging scores on the questions each student is asked, which is fair ex-ante, over the randomized questions, but not fair ex-post, on the realized questions. The fair grading problem is to estimate the average grade of each student on the full question bank. The maximum-likelihood estimator for the Bradley-Terry-Luce model on the bipartite student-question graph is shown to be consistent with high probability when the number of questions asked to each student is at least the cubed-logarithm of the number of students. In an empirical study on exam data and in simulations, our algorithm based on the maximum-likelihood estimator significantly outperforms simple averaging in prediction accuracy and ex-post fairness even with a small class and exam size.

Cite as

Jiale Chen, Jason Hartline, and Onno Zoeter. Fair Grading Algorithms for Randomized Exams. In 4th Symposium on Foundations of Responsible Computing (FORC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 256, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.FORC.2023.7,
  author =	{Chen, Jiale and Hartline, Jason and Zoeter, Onno},
  title =	{{Fair Grading Algorithms for Randomized Exams}},
  booktitle =	{4th Symposium on Foundations of Responsible Computing (FORC 2023)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-272-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{256},
  editor =	{Talwar, Kunal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2023.7},
  URN =		{urn:nbn:de:0030-drops-179282},
  doi =		{10.4230/LIPIcs.FORC.2023.7},
  annote =	{Keywords: Ex-ante and Ex-post Fairness, Item Response Theory, Algorithmic Fairness in Education}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail