Search Results

Documents authored by Chubet, Oliver A.


Document
A Theory of Sub-Barcodes

Authors: Oliver A. Chubet, Kirk P. Gardner, and Donald R. Sheehy

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The primary tool in topological data analysis (TDA) is persistent homology, which involves computing a barcode - often from point-cloud or scalar field data - that serves as a topological signature for the underlying function. In this work, we introduce sub-barcodes and show how they arise naturally from factorizations of persistence module homomorphisms. We show that, as a partial order induced by factorizations, the relation of being a sub-barcode is strictly stronger than the rank invariant, and we apply sub-barcode theory to the problem of inferring information about the barcode of an unknown Lipschitz function from samples. The advantage of this approach is that it permits strong guarantees - with no noise - while requiring no sampling assumptions, and the resulting barcode is guaranteed to be a sub-barcode of every Lipschitz function that agrees with the data. We also present an algorithmic theory that allows for the efficient approximation of sub-barcodes using filtered Delaunay triangulations for Euclidean inputs.

Cite as

Oliver A. Chubet, Kirk P. Gardner, and Donald R. Sheehy. A Theory of Sub-Barcodes. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chubet_et_al:LIPIcs.SoCG.2025.35,
  author =	{Chubet, Oliver A. and Gardner, Kirk P. and Sheehy, Donald R.},
  title =	{{A Theory of Sub-Barcodes}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.35},
  URN =		{urn:nbn:de:0030-drops-231873},
  doi =		{10.4230/LIPIcs.SoCG.2025.35},
  annote =	{Keywords: Topology, Topological Data Analysis, Persistent Homology, Persistence Modules, Barcodes, Sub-barcodes, Factorizations, Lipschitz Extensions}
}
Document
Media Exposition
Greedy Permutations and Finite Voronoi Diagrams (Media Exposition)

Authors: Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and Siddharth S. Sheth

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The greedy permutation is computed in O(nlog Δ) time for low-dimensional data using this method [Sariel Har-Peled and Manor Mendel, 2006; Donald R. Sheehy, 2020].

Cite as

Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and Siddharth S. Sheth. Greedy Permutations and Finite Voronoi Diagrams (Media Exposition). In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 64:1-64:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chubet_et_al:LIPIcs.SoCG.2023.64,
  author =	{Chubet, Oliver A. and Macnichol, Paul and Parikh, Parth and Sheehy, Donald R. and Sheth, Siddharth S.},
  title =	{{Greedy Permutations and Finite Voronoi Diagrams}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{64:1--64:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.64},
  URN =		{urn:nbn:de:0030-drops-179146},
  doi =		{10.4230/LIPIcs.SoCG.2023.64},
  annote =	{Keywords: greedy permutation, Voronoi diagrams}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail