Search Results

Documents authored by Correa, José R.


Found 2 Possible Name Variants:

Correa, José R.

Document
Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412)

Authors: José R. Correa, Tobias Harks, Kai Nagel, Britta Peis, and Martin Skutella

Published in: Dagstuhl Reports, Volume 5, Issue 10 (2016)


Abstract
Traffic assignment models are crucial for traffic planners to be able to predict traffic distributions, especially, in light of possible changes of the infrastructure, e.g., road constructions, traffic light controls, etc. The starting point of the seminar was the observation that there is a trend in the transportation community (science as well as industry) to base such predictions on complex computer-based simulations that are capable of resolving many elements of a real transportation system. On the other hand, within the past few years, the theory of dynamic traffic assignments in terms of equilibrium existence and equilibrium computation has not matured to the point matching the model complexity inherent in simulations. In view of the above, this interdisciplinary seminar brought together leading scientists in the areas traffic simulations, algorithmic game theory and dynamic traffic assignment as well as people from industry with strong scientific background who identified possible ways to bridge the described gap.

Cite as

José R. Correa, Tobias Harks, Kai Nagel, Britta Peis, and Martin Skutella. Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412). In Dagstuhl Reports, Volume 5, Issue 10, pp. 19-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{correa_et_al:DagRep.5.10.19,
  author =	{Correa, Jos\'{e} R. and Harks, Tobias and Nagel, Kai and Peis, Britta and Skutella, Martin},
  title =	{{Dynamic Traffic Models in Transportation Science (Dagstuhl Seminar 15412)}},
  pages =	{19--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2016},
  volume =	{5},
  number =	{10},
  editor =	{Correa, Jos\'{e} R. and Harks, Tobias and Nagel, Kai and Peis, Britta and Skutella, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.10.19},
  URN =		{urn:nbn:de:0030-drops-56938},
  doi =		{10.4230/DagRep.5.10.19},
  annote =	{Keywords: Dynamic traffic equilibria, Complexity of equilibrium computation, Simulation, Dynamic network flow theory, Network optimization}
}

Correa, José

Document
Extended Abstract
Unknown I.I.D. Prophets: Better Bounds, Streaming Algorithms, and a New Impossibility (Extended Abstract)

Authors: José Correa, Paul Dütting, Felix Fischer, Kevin Schewior, and Bruno Ziliotto

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
A prophet inequality states, for some α ∈ [0,1], that the expected value achievable by a gambler who sequentially observes random variables X_1,… ,X_n and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional β n samples for some β ≥ 0. We first give improved lower bounds on α for a wide range of values of β; specifically, α ≥ (1+β)/e when β ≤ 1/(e-1), which is tight, and α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of 1/e for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.

Cite as

José Correa, Paul Dütting, Felix Fischer, Kevin Schewior, and Bruno Ziliotto. Unknown I.I.D. Prophets: Better Bounds, Streaming Algorithms, and a New Impossibility (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, p. 86:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{correa_et_al:LIPIcs.ITCS.2021.86,
  author =	{Correa, Jos\'{e} and D\"{u}tting, Paul and Fischer, Felix and Schewior, Kevin and Ziliotto, Bruno},
  title =	{{Unknown I.I.D. Prophets: Better Bounds, Streaming Algorithms, and a New Impossibility}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{86:1--86:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.86},
  URN =		{urn:nbn:de:0030-drops-136255},
  doi =		{10.4230/LIPIcs.ITCS.2021.86},
  annote =	{Keywords: Prophet Inequalities, Stopping Theory, Unknown Distributions}
}
Document
On Guillotine Cutting Sequences

Authors: Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero, José A. Soto, and Andreas Wiese

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How many of them can a carpenter cut out using a panel saw making guillotine cuts, i.e., only moving forward through the material along a straight line until it is split into two pieces? Already fifteen years ago, Pach and Tardos investigated whether one can always cut out a constant fraction if all objects are axis-parallel rectangles. However, even for the case of axis-parallel squares this question is still open. In this paper, we answer the latter affirmatively. Our result is constructive and holds even in a more general setting where the squares have weights and the goal is to save as much weight as possible. We further show that when solving the more general question for rectangles affirmatively with only axis-parallel cuts, this would yield a combinatorial O(1)-approximation algorithm for the Maximum Independent Set of Rectangles problem, and would thus solve a long-standing open problem. In practical applications, like the mentioned carpentry and many other settings, we can usually place the items freely that we want to cut out, which gives rise to the two-dimensional guillotine knapsack problem: Given a collection of axis-parallel rectangles without presumed coordinates, our goal is to place as many of them as possible in a square-shaped knapsack respecting the constraint that the placed objects can be separated by a sequence of guillotine cuts. Our main result for this problem is a quasi-PTAS, assuming the input data to be quasi-polynomially bounded integers. This factor matches the best known (quasi-polynomial time) result for (non-guillotine) two-dimensional knapsack.

Cite as

Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero, José A. Soto, and Andreas Wiese. On Guillotine Cutting Sequences. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{abed_et_al:LIPIcs.APPROX-RANDOM.2015.1,
  author =	{Abed, Fidaa and Chalermsook, Parinya and Correa, Jos\'{e} and Karrenbauer, Andreas and P\'{e}rez-Lantero, Pablo and Soto, Jos\'{e} A. and Wiese, Andreas},
  title =	{{On Guillotine Cutting Sequences}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{1--19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.1},
  URN =		{urn:nbn:de:0030-drops-52917},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.1},
  annote =	{Keywords: Guillotine cuts, Rectangles, Squares, Independent Sets, Packing}
}
Document
10071 Open Problems – Scheduling

Authors: Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
Collection of the open problems presented at the scheduling seminar.

Cite as

Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger. 10071 Open Problems – Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:DagSemProc.10071.3,
  author =	{Anderson, Jim and Andersson, Bj\"{o}rn and Azar, Yossi and Bansal, Nikhil and Bini, Enrico and Chrobak, Marek and Correa, Jos\'{e} and Cucu-Grosjean, Liliana and Davis, Rob and Easwaran, Arvind and Edmonds, Jeff and Funk, Shelby and Gopalakrishnan, Sathish and Hoogeveen, Han and Mathieu, Claire and Megow, Nicole and Naor, Seffi and Pruhs, Kirk and Queyranne, Maurice and Ros\'{e}n, Adi and Schabanel, Nicolas and Sgall, Ji\v{r}{\'\i} and Sitters, Ren\'{e} and Stiller, Sebastian and Uetz, Marc and Vredeveld, Tjark and Woeginger, Gerhard J.},
  title =	{{10071 Open Problems – Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.3},
  URN =		{urn:nbn:de:0030-drops-25367},
  doi =		{10.4230/DagSemProc.10071.3},
  annote =	{Keywords: Open problems, scheduling}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail