Search Results

Documents authored by Dębski, Michał


Document
Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws

Authors: Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In the H-Coloring problem the graph H is fixed and we ask whether an instance graph G admits an H-coloring. A generalization of this problem is H-ColoringExt, where some vertices of G are already mapped to vertices of H and we ask if this partial mapping can be extended to an H-coloring. We study the complexity of variants of H-Coloring in F-free graphs, i.e., graphs excluding a fixed graph F as an induced subgraph. For integers a,b,c ⩾ 1, by S_{a,b,c} we denote the graph obtained by identifying one endvertex of three paths on a+1, b+1, and c+1 vertices, respectively. For odd k ⩾ 5, by W_k we denote the graph obtained from the k-cycle by adding a universal vertex. As our main algorithmic result we show that W_5-ColoringExt is polynomial-time solvable in S_{2,1,1}-free graphs. This result exhibits an interesting non-monotonicity of H-ColoringExt with respect to taking induced subgraphs of H. Indeed, W_5 contains a triangle, and K_3-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., S_{1,1,1}-free) graphs. Our algorithm is based on two main observations: 1) W_5-ColoringExt in S_{2,1,1}-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2) the latter problem can be solved in polynomial time in S_{2,1,1}-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that W_5-Coloring is NP-hard in P_t-free graphs for some constant t and W_5-ColoringExt is NP-hard in S_{3,3,3}-free graphs of bounded degree. This is again uncommon, as usually problems that are NP-hard in S_{a,b,c}-free graphs for some constant a,b,c are already hard in claw-free graphs

Cite as

Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{debski_et_al:LIPIcs.ISAAC.2022.14,
  author =	{D\k{e}bski, Micha{\l} and Lonc, Zbigniew and Okrasa, Karolina and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.14},
  URN =		{urn:nbn:de:0030-drops-172996},
  doi =		{10.4230/LIPIcs.ISAAC.2022.14},
  annote =	{Keywords: graph homomorphism, forbidden induced subgraphs, precoloring extension}
}
Document
Faster 3-Coloring of Small-Diameter Graphs

Authors: Michał Dębski, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We study the 3-Coloring problem in graphs with small diameter. In 2013, Mertzios and Spirakis showed that for n-vertex diameter-2 graphs this problem can be solved in subexponential time 2^{𝒪(√{n log n})}. Whether the problem can be solved in polynomial time remains a well-known open question in the area of algorithmic graphs theory. In this paper we present an algorithm that solves 3-Coloring in n-vertex diameter-2 graphs in time 2^{𝒪(n^{1/3} log² n)}. This is the first improvement upon the algorithm of Mertzios and Spirakis in the general case, i.e., without putting any further restrictions on the instance graph. In addition to standard branchings and reducing the problem to an instance of 2-Sat, the crucial building block of our algorithm is a combinatorial observation about 3-colorable diameter-2 graphs, which is proven using a probabilistic argument. As a side result, we show that 3-Coloring can be solved in time 2^{𝒪((n log n)^{2/3})} in n-vertex diameter-3 graphs. We also generalize our algorithms to the problem of finding a list homomorphism from a small-diameter graph to a cycle.

Cite as

Michał Dębski, Marta Piecyk, and Paweł Rzążewski. Faster 3-Coloring of Small-Diameter Graphs. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 37:1-37:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{debski_et_al:LIPIcs.ESA.2021.37,
  author =	{D\k{e}bski, Micha{\l} and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Faster 3-Coloring of Small-Diameter Graphs}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{37:1--37:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.37},
  URN =		{urn:nbn:de:0030-drops-146181},
  doi =		{10.4230/LIPIcs.ESA.2021.37},
  annote =	{Keywords: 3-coloring, fine-grained complexity, subexponential-time algorithm, diameter}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail