Search Results

Documents authored by Dallard, Clément


Document
Track A: Algorithms, Complexity and Games
Computing Tree Decompositions with Small Independence Number

Authors: Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^𝒪(k) if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov in [SODA 2018] gave an algorithm that given an n-vertex graph G and an integer k, in time n^𝒪(k³) either constructs a tree decomposition of G whose independence number is 𝒪(k³) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^𝒪(k²) n^𝒪(k) and either outputs a tree decomposition of G with independence number at most 8k, or determines that the tree-independence number of G is larger than k. This implies 2^𝒪(k²) n^𝒪(k)-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^Ω(k) factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k ≥ 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Cite as

Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič. Computing Tree Decompositions with Small Independence Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dallard_et_al:LIPIcs.ICALP.2024.51,
  author =	{Dallard, Cl\'{e}ment and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Milani\v{c}, Martin},
  title =	{{Computing Tree Decompositions with Small Independence Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.51},
  URN =		{urn:nbn:de:0030-drops-201945},
  doi =		{10.4230/LIPIcs.ICALP.2024.51},
  annote =	{Keywords: tree-independence number, approximation, parameterized algorithms}
}
Document
On Constrained Intersection Representations of Graphs and Digraphs

Authors: Ferdinando Cicalese, Clément Dallard, and Martin Milanič

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We study the problem of determining minimal directed intersection representations of DAGs in a model introduced by [Kostochka, Liu, Machado, and Milenkovic, ISIT2019]: vertices are assigned color sets, two vertices are connected by an arc if and only if they share at least one color and the tail vertex has a strictly smaller color set than the head, and the goal is to minimize the total number of colors. We show that the problem is polynomially solvable in the class of triangle-free and Hamiltonian DAGs and also disclose the relationship of this problem with several other models of intersection representations of graphs and digraphs.

Cite as

Ferdinando Cicalese, Clément Dallard, and Martin Milanič. On Constrained Intersection Representations of Graphs and Digraphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cicalese_et_al:LIPIcs.ISAAC.2022.38,
  author =	{Cicalese, Ferdinando and Dallard, Cl\'{e}ment and Milani\v{c}, Martin},
  title =	{{On Constrained Intersection Representations of Graphs and Digraphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.38},
  URN =		{urn:nbn:de:0030-drops-173239},
  doi =		{10.4230/LIPIcs.ISAAC.2022.38},
  annote =	{Keywords: Directed intersection representation, intersection number}
}
Document
On Girth and the Parameterized Complexity of Token Sliding and Token Jumping

Authors: Valentin Bartier, Nicolas Bousquet, Clément Dallard, Kyle Lomer, and Amer E. Mouawad

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
In the Token Jumping problem we are given a graph G = (V,E) and two independent sets S and T of G, each of size k ≥ 1. The goal is to determine whether there exists a sequence of k-sized independent sets in G, 〈S_0, S_1, ..., S_𝓁〉, such that for every i, |S_i| = k, S_i is an independent set, S = S_0, S_𝓁 = T, and |S_i Δ S_i+1| = 2. In other words, if we view each independent set as a collection of tokens placed on a subset of the vertices of G, then the problem asks for a sequence of independent sets which transforms S to T by individual token jumps which maintain the independence of the sets. This problem is known to be PSPACE-complete on very restricted graph classes, e.g., planar bounded degree graphs and graphs of bounded bandwidth. A closely related problem is the Token Sliding problem, where instead of allowing a token to jump to any vertex of the graph we instead require that a token slides along an edge of the graph. Token Sliding is also known to be PSPACE-complete on the aforementioned graph classes. We investigate the parameterized complexity of both problems on several graph classes, focusing on the effect of excluding certain cycles from the input graph. In particular, we show that both Token Sliding and Token Jumping are fixed-parameter tractable on C_4-free bipartite graphs when parameterized by k. For Token Jumping, we in fact show that the problem admits a polynomial kernel on {C_3,C_4}-free graphs. In the case of Token Sliding, we also show that the problem admits a polynomial kernel on bipartite graphs of bounded degree. We believe both of these results to be of independent interest. We complement these positive results by showing that, for any constant p ≥ 4, both problems are W[1]-hard on {C_4, ..., C_p}-free graphs and Token Sliding remains W[1]-hard even on bipartite graphs.

Cite as

Valentin Bartier, Nicolas Bousquet, Clément Dallard, Kyle Lomer, and Amer E. Mouawad. On Girth and the Parameterized Complexity of Token Sliding and Token Jumping. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 44:1-44:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bartier_et_al:LIPIcs.ISAAC.2020.44,
  author =	{Bartier, Valentin and Bousquet, Nicolas and Dallard, Cl\'{e}ment and Lomer, Kyle and Mouawad, Amer E.},
  title =	{{On Girth and the Parameterized Complexity of Token Sliding and Token Jumping}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{44:1--44:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.44},
  URN =		{urn:nbn:de:0030-drops-133886},
  doi =		{10.4230/LIPIcs.ISAAC.2020.44},
  annote =	{Keywords: Combinatorial reconfiguration, Independent Set, Token Jumping, Token Sliding, Parameterized Complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail