Search Results

Documents authored by Dalmeijer, Kevin


Document
A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design

Authors: Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
As quantum technology is advancing, the efficient design of quantum circuits has become an important area of research. This paper provides an introduction to the MCT quantum circuit design problem for reversible Boolean functions without assuming a prior background in quantum computing. While this is a well-studied problem, optimization models that minimize the true objective have only been explored recently. This paper introduces a new optimization model and symmetry-breaking constraints that improve solving time by up to two orders of magnitude compared to earlier work when a Constraint Programming solver is used. Experiments with up to seven qubits and using up to 15 quantum gates result in several new best-known circuits, obtained by any method, for well-known benchmarks. Finally, an extensive comparison with other approaches shows that optimization models may require more time but can provide superior circuits with optimality guarantees.

Cite as

Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck. A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.CP.2024.16,
  author =	{Jung, Jihye and Dalmeijer, Kevin and Van Hentenryck, Pascal},
  title =	{{A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.16},
  URN =		{urn:nbn:de:0030-drops-207010},
  doi =		{10.4230/LIPIcs.CP.2024.16},
  annote =	{Keywords: Constraint Programming, Quantum Circuit Design, Reversible Circuits}
}
Document
Short Paper
Constraint Programming to Improve Hub Utilization in Autonomous Transfer Hub Networks (Short Paper)

Authors: Chungjae Lee, Wirattawut Boonbandansook, Vahid Eghbal Akhlaghi, Kevin Dalmeijer, and Pascal Van Hentenryck

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
The Autonomous Transfer Hub Network (ATHN) is one of the most promising ways to adapt self-driving trucks for the freight industry. These networks use autonomous trucks for the middle mile, while human drivers perform the first and last miles. This paper extends previous work on optimizing ATHN operations by including transfer hub capacities, which are crucial for labor planning and policy design. It presents a Constraint Programming (CP) model that shifts an initial schedule produced by a Mixed Integer Program to minimize the hub capacities. The scalability of the CP model is demonstrated on a case study at the scale of the United States, based on data provided by Ryder System, Inc. The CP model efficiently finds optimal solutions and lowers the necessary total hub capacity by 42%, saving $15.2M in annual labor costs. The results also show that the reduced capacity is close to a theoretical (optimistic) lower bound.

Cite as

Chungjae Lee, Wirattawut Boonbandansook, Vahid Eghbal Akhlaghi, Kevin Dalmeijer, and Pascal Van Hentenryck. Constraint Programming to Improve Hub Utilization in Autonomous Transfer Hub Networks (Short Paper). In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 46:1-46:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.CP.2023.46,
  author =	{Lee, Chungjae and Boonbandansook, Wirattawut and Akhlaghi, Vahid Eghbal and Dalmeijer, Kevin and Van Hentenryck, Pascal},
  title =	{{Constraint Programming to Improve Hub Utilization in Autonomous Transfer Hub Networks}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{46:1--46:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.46},
  URN =		{urn:nbn:de:0030-drops-190835},
  doi =		{10.4230/LIPIcs.CP.2023.46},
  annote =	{Keywords: Constraint Programming, Autonomous Trucking, Tranfer Hub Network}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail