Search Results

Documents authored by Dan, Chen


Found 3 Possible Name Variants:

Dan, Chen

Document
Bilu-Linial Stability, Certified Algorithms and the Independent Set Problem

Authors: Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We study the classic Maximum Independent Set problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of Independent Set is gamma-stable if it has a unique optimal solution that remains the unique optimal solution under multiplicative perturbations of the weights by a factor of at most gamma >= 1. The goal then is to efficiently recover this "pronounced" optimal solution exactly. In this work, we solve stable instances of Independent Set on several classes of graphs: we improve upon previous results by solving O~(Delta/sqrt(log Delta))-stable instances on graphs of maximum degree Delta, (k - 1)-stable instances on k-colorable graphs and (1 + epsilon)-stable instances on planar graphs (for any fixed epsilon > 0), using both combinatorial techniques as well as LPs and the Sherali-Adams hierarchy. For general graphs, we present a strong lower bound showing that there are no efficient algorithms for O(n^(1/2 - epsilon))-stable instances of Independent Set, assuming the planted clique conjecture. To complement our negative result, we give an algorithm for (epsilon n)-stable instances, for any fixed epsilon > 0. As a by-product of our techniques, we give algorithms as well as lower bounds for stable instances of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to Vertex Cover. Furthermore, we prove a general structural result showing that the integrality gap of convex relaxations of several maximization problems reduces dramatically on stable instances. Moreover, we initiate the study of certified algorithms for Independent Set. The notion of a gamma-certified algorithm was introduced very recently by Makarychev and Makarychev (2018) and it is a class of gamma-approximation algorithms that satisfy one crucial property: the solution returned is optimal for a perturbation of the original instance, where perturbations are again multiplicative up to a factor of gamma >= 1 (hence, such algorithms not only solve gamma-stable instances optimally, but also have guarantees even on unstable instances). Here, we obtain Delta-certified algorithms for Independent Set on graphs of maximum degree Delta, and (1+epsilon)-certified algorithms on planar graphs. Finally, we analyze the algorithm of Berman and Fürer (1994) and prove that it is a ((Delta + 1)/3 + epsilon)-certified algorithm for Independent Set on graphs of maximum degree Delta where all weights are equal to 1.

Cite as

Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan. Bilu-Linial Stability, Certified Algorithms and the Independent Set Problem. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{angelidakis_et_al:LIPIcs.ESA.2019.7,
  author =	{Angelidakis, Haris and Awasthi, Pranjal and Blum, Avrim and Chatziafratis, Vaggos and Dan, Chen},
  title =	{{Bilu-Linial Stability, Certified Algorithms and the Independent Set Problem}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.7},
  URN =		{urn:nbn:de:0030-drops-111288},
  doi =		{10.4230/LIPIcs.ESA.2019.7},
  annote =	{Keywords: Bilu-Linial stability, perturbation resilience, beyond worst-case analysis, Independent Set, Vertex Cover, Multiway Cut}
}
Document
Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations

Authors: Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Low rank approximation of matrices is an important tool in machine learning. Given a data matrix, low rank approximation helps to find factors, patterns, and provides concise representations for the data. Research on low rank approximation usually focuses on real matrices. However, in many applications data are binary (categorical) rather than continuous. This leads to the problem of low rank approximation of binary matrices. Here we are given a d x n binary matrix A and a small integer k < d. The goal is to find two binary matrices U and V of sizes d x k and k x n respectively, so that the Frobenius norm of A - U V is minimized. There are two models of this problem, depending on the definition of the dot product of binary vectors: The GF(2) model and the Boolean semiring model. Unlike low rank approximation of a real matrix which can be efficiently solved by Singular Value Decomposition, we show that approximation of a binary matrix is NP-hard, even for k=1. In this paper, our main concern is the problem of Column Subset Selection (CSS), in which the low rank matrix U must be formed by k columns of the data matrix, and we are interested in the approximation ratio achievable by CSS for binary matrices. For the GF(2) model, we show that CSS has approximation ratio bounded by k/2+1+k/(2(2^k-1)) and this is asymptotically tight. For the Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then develop a Generalized CSS (GCSS) procedure in which the columns of U are generated from Boolean formulas operating bitwise on selected columns of the data matrix. We show that the approximation ratio achieved by GCSS is bounded by 2^(k-1)+1, and argue that an exponential dependency on k is seems inherent.

Cite as

Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou. Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dan_et_al:LIPIcs.MFCS.2018.41,
  author =	{Dan, Chen and Hansen, Kristoffer Arnsfelt and Jiang, He and Wang, Liwei and Zhou, Yuchen},
  title =	{{Low Rank Approximation of Binary Matrices: Column Subset Selection and Generalizations}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.41},
  URN =		{urn:nbn:de:0030-drops-96239},
  doi =		{10.4230/LIPIcs.MFCS.2018.41},
  annote =	{Keywords: Approximation Algorithms, Low Rank Approximation, Binary Matrices}
}

Chen, Daniel

Document
Fast Map Matching with Vertex-Monotone Fréchet Distance

Authors: Daniel Chen, Christian Sommer, and Daniel Wolleb

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
We study a generalization for map matching algorithms that includes both geometric approaches such as the Fréchet distance and global weight approaches such as those typically used by Hidden Markov Models. Through this perspective, we discovered an efficient map matching algorithm with respect to the vertex-monotone Fréchet distance while using a heuristic tie-breaker inspired by global weight methods. While the classical Fréchet distance requires parameterizations to be monotone, the vertex-monotone Fréchet distance allows backtracking within edges. Our analysis and experimental evaluations show that relaxing the monotonicity constraint enables significantly faster algorithms without significantly altering the resulting map matched paths.

Cite as

Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast Map Matching with Vertex-Monotone Fréchet Distance. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:OASIcs.ATMOS.2021.10,
  author =	{Chen, Daniel and Sommer, Christian and Wolleb, Daniel},
  title =	{{Fast Map Matching with Vertex-Monotone Fr\'{e}chet Distance}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{10:1--10:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.10},
  URN =		{urn:nbn:de:0030-drops-148794},
  doi =		{10.4230/OASIcs.ATMOS.2021.10},
  annote =	{Keywords: Fr\'{e}chet distance, map matching, minimum bottleneck path}
}

Chen, Danny Z.

Document
Complete Volume
LIPIcs, Volume 164, SoCG 2020, Complete Volume

Authors: Sergio Cabello and Danny Z. Chen

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
LIPIcs, Volume 164, SoCG 2020, Complete Volume

Cite as

36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 1-1222, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{cabello_et_al:LIPIcs.SoCG.2020,
  title =	{{LIPIcs, Volume 164, SoCG 2020, Complete Volume}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{1--1222},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020},
  URN =		{urn:nbn:de:0030-drops-121576},
  doi =		{10.4230/LIPIcs.SoCG.2020},
  annote =	{Keywords: LIPIcs, Volume 164, SoCG 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Sergio Cabello and Danny Z. Chen

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.SoCG.2020.0,
  author =	{Cabello, Sergio and Chen, Danny Z.},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.0},
  URN =		{urn:nbn:de:0030-drops-121587},
  doi =		{10.4230/LIPIcs.SoCG.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
L_1 Shortest Path Queries among Polygonal Obstacles in the Plane

Authors: Danny Z. Chen and Haitao Wang

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n+h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of the L_1 shortest obstacle-avoiding path from s to t can be reported in O(log n) time and the actual path can be found in additional time proportional to the number of edges of the path. Previously, the best algorithm computes such a shortest path map in O(n log n) time and O(n) space. In addition, our techniques also yield an improved algorithm for computing the L_1 geodesic Voronoi diagram of m point sites among the obstacles.

Cite as

Danny Z. Chen and Haitao Wang. L_1 Shortest Path Queries among Polygonal Obstacles in the Plane. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 293-304, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.STACS.2013.293,
  author =	{Chen, Danny Z. and Wang, Haitao},
  title =	{{L\underline1 Shortest Path Queries among Polygonal Obstacles in the Plane}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{293--304},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.293},
  URN =		{urn:nbn:de:0030-drops-39425},
  doi =		{10.4230/LIPIcs.STACS.2013.293},
  annote =	{Keywords: computational geometry, shortest path queries, shortest paths among obstacles, \$L\underline1\$/\$L\underlineinfty\$/rectilinear metric, shortest path maps, geodesic Vorono}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail