Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)
Max Deppert, Matthias Kaul, and Matthias Mnich. A (3/2 + ε)-Approximation for Multiple TSP with a Variable Number of Depots. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{deppert_et_al:LIPIcs.ESA.2023.39,
author = {Deppert, Max and Kaul, Matthias and Mnich, Matthias},
title = {{A (3/2 + \epsilon)-Approximation for Multiple TSP with a Variable Number of Depots}},
booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)},
pages = {39:1--39:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-295-2},
ISSN = {1868-8969},
year = {2023},
volume = {274},
editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.39},
URN = {urn:nbn:de:0030-drops-186925},
doi = {10.4230/LIPIcs.ESA.2023.39},
annote = {Keywords: Traveling salesperson problem, rural postperson problem, multiple TSP, vehicle routing}
}