Search Results

Documents authored by Derksen, Harm


Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors

Authors: Harm Derksen, Visu Makam, and Jeroen Zuiddam

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Since the seminal works of Strassen and Valiant it has been a central theme in algebraic complexity theory to understand the relative complexity of algebraic problems, that is, to understand which algebraic problems (be it bilinear maps like matrix multiplication in Strassen’s work, or the determinant and permanent polynomials in Valiant’s) can be reduced to each other (under the appropriate notion of reduction). In this paper we work in the setting of bilinear maps and with the usual notion of reduction that allows applying linear maps to the inputs and output of a bilinear map in order to compute another bilinear map. As our main result we determine precisely how many independent scalar multiplications can be reduced to a given bilinear map (this number is called the subrank, and extends the concept of matrix diagonalization to tensors), for essentially all (i.e. generic) bilinear maps. Namely, we prove for a generic bilinear map T : V × V → V where dim(V) = n that θ(√n) independent scalar multiplications can be reduced to T. Our result significantly improves on the previous upper bound from the work of Strassen (1991) and Bürgisser (1990) which was n^{2/3 + o(1)}. Our result is very precise and tight up to an additive constant. Our full result is much more general and applies not only to bilinear maps and 3-tensors but also to k-tensors, for which we find that the generic subrank is θ(n^{1/(k-1)}). Moreover, as an application we prove that the subrank is not additive under the direct sum. The subrank plays a central role in several areas of complexity theory (matrix multiplication algorithms, barrier results) and combinatorics (e.g., the cap set problem and sunflower problem). As a consequence of our result we obtain several large separations between the subrank and tensor methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank (Gowers-Wolf, 2011; Lovett, 2018; Bhrushundi-Harsha-Hatami-Kopparty-Kumar, 2020), geometric rank (Kopparty-Moshkovitz-Zuiddam, 2020), and G-stable rank (Derksen, 2020). Our proofs of the lower bounds rely on a new technical result about an optimal decomposition of tensor space into structured subspaces, which we think may be of independent interest.

Cite as

Harm Derksen, Visu Makam, and Jeroen Zuiddam. Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2022.9,
  author =	{Derksen, Harm and Makam, Visu and Zuiddam, Jeroen},
  title =	{{Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.9},
  URN =		{urn:nbn:de:0030-drops-165716},
  doi =		{10.4230/LIPIcs.CCC.2022.9},
  annote =	{Keywords: tensors, bilinear maps, complexity, subrank, diagonalization, generic tensors, random tensors, reduction, slice rank}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail