Search Results

Documents authored by Di Giorgio, Alessandro


Document
When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a proof system for first-order logic that is both purely equational and complete. This paper illustrates a correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof, we introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta. When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.MFCS.2024.30,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Trotta, Davide},
  title =	{{When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.30},
  URN =		{urn:nbn:de:0030-drops-205867},
  doi =		{10.4230/LIPIcs.MFCS.2024.30},
  annote =	{Keywords: relational algebra, hyperdoctrines, cartesian bicategories, string diagrams}
}
Document
Diagrammatic Polyhedral Algebra

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We extend the theory of Interacting Hopf algebras with an order primitive, and give a sound and complete axiomatisation of the prop of polyhedral cones. Next, we axiomatise an affine extension and prove soundness and completeness for the prop of polyhedra.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński. Diagrammatic Polyhedral Algebra. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.FSTTCS.2021.40,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Soboci\'{n}ski, Pawe{\l}},
  title =	{{Diagrammatic Polyhedral Algebra}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.40},
  URN =		{urn:nbn:de:0030-drops-155511},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.40},
  annote =	{Keywords: String diagrams, Polyhedral cones, Polyhedra}
}
Document
(Co)algebraic pearls
From Farkas' Lemma to Linear Programming: an Exercise in Diagrammatic Algebra ((Co)algebraic pearls)

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Fabio Zanasi

Published in: LIPIcs, Volume 211, 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)


Abstract
Farkas' lemma is a celebrated result on the solutions of systems of linear inequalities, which finds application pervasively in mathematics and computer science. In this work we show how to formulate and prove Farkas' lemma in diagrammatic polyhedral algebra, a sound and complete graphical calculus for polyhedra. Furthermore, we show how linear programs can be modeled within the calculus and how some famous duality results can be proved.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Fabio Zanasi. From Farkas' Lemma to Linear Programming: an Exercise in Diagrammatic Algebra ((Co)algebraic pearls). In 9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 211, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.CALCO.2021.9,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Zanasi, Fabio},
  title =	{{From Farkas' Lemma to Linear Programming: an Exercise in Diagrammatic Algebra}},
  booktitle =	{9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-212-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{211},
  editor =	{Gadducci, Fabio and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2021.9},
  URN =		{urn:nbn:de:0030-drops-153643},
  doi =		{10.4230/LIPIcs.CALCO.2021.9},
  annote =	{Keywords: String diagrams, Farkas Lemma, Duality, Linear Programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail