Published in: OASIcs, Volume 136, 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)
Abel Diaz-Gonzalez, Austin Coursey, Marcos Quinones-Grueiro, and Gautam Biswas. A Data-Driven Particle Filter Approach for System-Level Prediction of Remaining Useful Life. In 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025). Open Access Series in Informatics (OASIcs), Volume 136, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{diazgonzalez_et_al:OASIcs.DX.2025.11,
author = {Diaz-Gonzalez, Abel and Coursey, Austin and Quinones-Grueiro, Marcos and Biswas, Gautam},
title = {{A Data-Driven Particle Filter Approach for System-Level Prediction of Remaining Useful Life}},
booktitle = {36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)},
pages = {11:1--11:13},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-394-2},
ISSN = {2190-6807},
year = {2025},
volume = {136},
editor = {Quinones-Grueiro, Marcos and Biswas, Gautam and Pill, Ingo},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2025.11},
URN = {urn:nbn:de:0030-drops-248006},
doi = {10.4230/OASIcs.DX.2025.11},
annote = {Keywords: remaining useful life, particle filter methods, data-driven methods, system-level prognostics, performance metrics}
}
Published in: OASIcs, Volume 136, 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)
Austin Coursey, Abel Diaz-Gonzalez, Marcos Quinones-Grueiro, and Gautam Biswas. Data-Driven Fault Detection and Isolation Enhanced with System Structural Relationships (DX Competition). In 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025). Open Access Series in Informatics (OASIcs), Volume 136, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{coursey_et_al:OASIcs.DX.2025.15,
author = {Coursey, Austin and Diaz-Gonzalez, Abel and Quinones-Grueiro, Marcos and Biswas, Gautam},
title = {{Data-Driven Fault Detection and Isolation Enhanced with System Structural Relationships}},
booktitle = {36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)},
pages = {15:1--15:17},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-394-2},
ISSN = {2190-6807},
year = {2025},
volume = {136},
editor = {Quinones-Grueiro, Marcos and Biswas, Gautam and Pill, Ingo},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2025.15},
URN = {urn:nbn:de:0030-drops-248043},
doi = {10.4230/OASIcs.DX.2025.15},
annote = {Keywords: fault detection, fault isolation, autoencoder}
}
Published in: OASIcs, Volume 125, 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
Abel Diaz-Gonzalez, Austin Coursey, Marcos Quinones-Grueiro, Chetan S. Kulkarni, and Gautam Biswas. Data-Driven RUL Prediction Using Performance Metrics (Short Paper). In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{diazgonzalez_et_al:OASIcs.DX.2024.21,
author = {Diaz-Gonzalez, Abel and Coursey, Austin and Quinones-Grueiro, Marcos and Kulkarni, Chetan S. and Biswas, Gautam},
title = {{Data-Driven RUL Prediction Using Performance Metrics}},
booktitle = {35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)},
pages = {21:1--21:15},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-356-0},
ISSN = {2190-6807},
year = {2024},
volume = {125},
editor = {Pill, Ingo and Natan, Avraham and Wotawa, Franz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.21},
URN = {urn:nbn:de:0030-drops-221135},
doi = {10.4230/OASIcs.DX.2024.21},
annote = {Keywords: remaining useful life, data-driven methods, machine learning, performance metric, multitask machine learning, Monte Carlo}
}