Search Results

Documents authored by Dwivedi, Ashish


Document
RANDOM
Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately Large Fields

Authors: Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We construct explicit pseudorandom generators that fool n-variate polynomials of degree at most d over a finite field 𝔽_q. The seed length of our generators is O(d log n + log q), over fields of size exponential in d and characteristic at least d(d-1)+1. Previous constructions such as Bogdanov’s (STOC 2005) and Derksen and Viola’s (FOCS 2022) had either suboptimal seed length or required the field size to depend on n. Our approach follows Bogdanov’s paradigm while incorporating techniques from Lecerf’s factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and Viola regarding the role of indecomposability of polynomials.

Cite as

Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately Large Fields. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 44:1-44:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dwivedi_et_al:LIPIcs.APPROX/RANDOM.2024.44,
  author =	{Dwivedi, Ashish and Guo, Zeyu and Volk, Ben Lee},
  title =	{{Optimal Pseudorandom Generators for Low-Degree Polynomials over Moderately Large Fields}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{44:1--44:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.44},
  URN =		{urn:nbn:de:0030-drops-210370},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.44},
  annote =	{Keywords: Pseudorandom Generators, Low Degree Polynomials}
}
Document
Counting Basic-Irreducible Factors Mod p^k in Deterministic Poly-Time and p-Adic Applications

Authors: Ashish Dwivedi, Rajat Mittal, and Nitin Saxena

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
Finding an irreducible factor, of a polynomial f(x) modulo a prime p, is not known to be in deterministic polynomial time. Though there is such a classical algorithm that counts the number of irreducible factors of f mod p. We can ask the same question modulo prime-powers p^k. The irreducible factors of f mod p^k blow up exponentially in number; making it hard to describe them. Can we count those irreducible factors mod p^k that remain irreducible mod p? These are called basic-irreducible. A simple example is in f=x^2+px mod p^2; it has p many basic-irreducible factors. Also note that, x^2+p mod p^2 is irreducible but not basic-irreducible! We give an algorithm to count the number of basic-irreducible factors of f mod p^k in deterministic poly(deg(f),k log p)-time. This solves the open questions posed in (Cheng et al, ANTS'18 & Kopp et al, Math.Comp.'19). In particular, we are counting roots mod p^k; which gives the first deterministic poly-time algorithm to compute Igusa zeta function of f. Also, our algorithm efficiently partitions the set of all basic-irreducible factors (possibly exponential) into merely deg(f)-many disjoint sets, using a compact tree data structure and split ideals.

Cite as

Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Counting Basic-Irreducible Factors Mod p^k in Deterministic Poly-Time and p-Adic Applications. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 15:1-15:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dwivedi_et_al:LIPIcs.CCC.2019.15,
  author =	{Dwivedi, Ashish and Mittal, Rajat and Saxena, Nitin},
  title =	{{Counting Basic-Irreducible Factors Mod p^k in Deterministic Poly-Time and p-Adic Applications}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{15:1--15:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.15},
  URN =		{urn:nbn:de:0030-drops-108373},
  doi =		{10.4230/LIPIcs.CCC.2019.15},
  annote =	{Keywords: deterministic, root, counting, modulo, prime-power, tree, basic irreducible, unramified}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail