Search Results

Documents authored by Dwivedi, Prateek


Document
Monotone Bounded-Depth Complexity of Homomorphism Polynomials

Authors: C.S. Bhargav, Shiteng Chen, Radu Curticapean, and Prateek Dwivedi

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
For every fixed graph H, it is known that homomorphism counts from H and colorful H-subgraph counts can be determined in O(n^{t+1}) time on n-vertex input graphs G, where t is the treewidth of H. On the other hand, a running time of n^{o(t / log t)} would refute the exponential-time hypothesis. Komarath, Pandey, and Rahul (Algorithmica, 2023) studied algebraic variants of these counting problems, i.e., homomorphism and subgraph polynomials for fixed graphs H. These polynomials are weighted sums over the objects counted above, where each object is weighted by the product of variables corresponding to edges contained in the object. As shown by Komarath et al., the monotone circuit complexity of the homomorphism polynomial for H is Θ(n^{tw(H)+1}). In this paper, we characterize the power of monotone bounded-depth circuits for homomorphism and colorful subgraph polynomials. This leads us to discover a natural hierarchy of graph parameters tw_Δ(H), for fixed Δ ∈ ℕ, which capture the width of tree-decompositions for H when the underlying tree is required to have depth at most Δ. We prove that monotone circuits of product-depth Δ computing the homomorphism polynomial for H require size Θ(n^{tw_Δ(H^{†})+1}), where H^{†} is the graph obtained from H by removing all degree-1 vertices. This allows us to derive an optimal depth hierarchy theorem for monotone bounded-depth circuits through graph-theoretic arguments.

Cite as

C.S. Bhargav, Shiteng Chen, Radu Curticapean, and Prateek Dwivedi. Monotone Bounded-Depth Complexity of Homomorphism Polynomials. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhargav_et_al:LIPIcs.MFCS.2025.19,
  author =	{Bhargav, C.S. and Chen, Shiteng and Curticapean, Radu and Dwivedi, Prateek},
  title =	{{Monotone Bounded-Depth Complexity of Homomorphism Polynomials}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.19},
  URN =		{urn:nbn:de:0030-drops-241269},
  doi =		{10.4230/LIPIcs.MFCS.2025.19},
  annote =	{Keywords: algebraic complexity, homomorphisms, monotone circuit complexity, bounded-depth circuits, treewidth, pathwidth}
}
Document
Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

Authors: Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS'08) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (Σ^[k] Π Σ ∧) and sum-product-of-constant-degree-polynomials (Σ^[k] Π Σ Π^[δ]), for constants k, δ, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC'05; Kayal & Saxena, CCC'06; Saxena & Seshadhri, FOCS'10, STOC'11); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP'11; Saha,Saxena & Saptharishi, Comput.Compl.'13; Forbes, FOCS'15; Kumar & Saraf, CCC'16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS'09; Shpilka, STOC'19; Peleg & Shpilka, CCC'20, STOC'21). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for Σ^[k] Π Σ ∧. Further, we give the first quasipolynomial time blackbox PIT for both Σ^[k] Π Σ ∧ and Σ^[k] Π Σ Π^[δ]. No subexponential time algorithm was known prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.

Cite as

Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 11:1-11:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dutta_et_al:LIPIcs.CCC.2021.11,
  author =	{Dutta, Pranjal and Dwivedi, Prateek and Saxena, Nitin},
  title =	{{Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{11:1--11:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.11},
  URN =		{urn:nbn:de:0030-drops-142857},
  doi =		{10.4230/LIPIcs.CCC.2021.11},
  annote =	{Keywords: Polynomial identity testing, hitting set, depth-4 circuits}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail