Search Results

Documents authored by Ebert, Achim


Document
Visualization and Evolution of Software Architectures

Authors: Taimur Khan, Henning Barthel, Achim Ebert, and Peter Liggesmeyer

Published in: OASIcs, Volume 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011


Abstract
Software systems are an integral component of our everyday life as we find them in tools and embedded in equipment all around us. In order to ensure smooth, predictable, and accurate operation of these systems, it is crucial to produce and maintain systems that are highly reliable. A well-designed and well-maintained architecture goes a long way in achieving this goal. However, due to the intangible and often complex nature of software architecture, this task can be quite complicated. The field of software architecture visualization aims to ease this task by providing tools and techniques to examine the hierarchy, relationship, evolution, and quality of architecture components. In this paper, we present a discourse on the state of the art of software architecture visualization techniques. Further, we highlight the importance of developing solutions tailored to meet the needs and requirements of the stakeholders involved in the analysis process.

Cite as

Taimur Khan, Henning Barthel, Achim Ebert, and Peter Liggesmeyer. Visualization and Evolution of Software Architectures. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 25-42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:OASIcs.VLUDS.2011.25,
  author =	{Khan, Taimur and Barthel, Henning and Ebert, Achim and Liggesmeyer, Peter},
  title =	{{Visualization and Evolution of Software Architectures}},
  booktitle =	{Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
  pages =	{25--42},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-46-0},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{27},
  editor =	{Garth, Christoph and Middel, Ariane and Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.25},
  URN =		{urn:nbn:de:0030-drops-37390},
  doi =		{10.4230/OASIcs.VLUDS.2011.25},
  annote =	{Keywords: Software architecture visualization, software comprehension, software maintenance, software evolution, human perception}
}
Document
Evaluation of Mobile Phones for Large Display Interaction

Authors: Jens Bauer, Sebastian Thelen, and Achim Ebert

Published in: OASIcs, Volume 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011


Abstract
Large displays have become more and more common in the last few years. While interaction with these displays can be conducted using standard methods such as computer mouse and keyboard, this approach causes issues in multi-user environments, where the various conditions for providing multiple keyboards and mice, together with the facilities to employ them, cannot be met. To solve this problem, interaction using mobile phones was proposed by several authors. Previous solutions were specialized interaction metaphors only for certain applications. To gain more insight into general interaction patterns realizable with smart phones, we created a set of general test cases using a well-known taxonomy for interactions. These test cases were then evaluated in a user study, comparing smart phone usage against the traditional keyboard/mouse-combination. Results (time and user satisfaction) show strengths and weaknesses when using the new interaction with the smart phone. With further evaluations we draw conclusions on how to improve large display interaction using smart phones in general.

Cite as

Jens Bauer, Sebastian Thelen, and Achim Ebert. Evaluation of Mobile Phones for Large Display Interaction. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 103-112, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{bauer_et_al:OASIcs.VLUDS.2011.103,
  author =	{Bauer, Jens and Thelen, Sebastian and Ebert, Achim},
  title =	{{Evaluation of Mobile Phones for Large Display Interaction}},
  booktitle =	{Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
  pages =	{103--112},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-46-0},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{27},
  editor =	{Garth, Christoph and Middel, Ariane and Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.103},
  URN =		{urn:nbn:de:0030-drops-37442},
  doi =		{10.4230/OASIcs.VLUDS.2011.103},
  annote =	{Keywords: User Study, Large Display Interaction}
}
Document
Controlling In-Vehicle Systems with a Commercial EEG Headset: Performance and Cognitive Load

Authors: Daniel Cernea, Peter-Scott Olech, Achim Ebert, and Andreas Kerren

Published in: OASIcs, Volume 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011


Abstract
Humans have dreamed for centuries to control their surroundings solely by the power of their minds. These aspirations have been captured by multiple science fiction creations, such as the Neuromancer novel by William Gibson or the Brainstorm cinematic movie, to name just a few. Nowadays, these dreams are slowly becoming reality due to a variety of brain-computer interfaces (BCI) that detect neural activation patterns and support the control of devices by brain signals. An important field in which BCIs are being successfully integrated is the interaction with vehicular systems. In this paper, we evaluate the performance of BCIs, more specifically a commercial electroencephalographic (EEG) headset in combination with vehicle dashboard systems, and highlight the advantages and limitations of this approach. Further, we investigate the cognitive load that drivers experience when interacting with secondary in-vehicle devices via touch controls or a BCI headset. As in-vehicle systems are increasingly versatile and complex, it becomes vital to capture the level of distraction and errors that controlling these secondary systems might introduce to the primary driving process. Our results suggest that the control with the EEG headset introduces less distraction to the driver, probably as it allows the eyes of the driver to remain focused on the road. Still, the control of the vehicle dashboard by EEG is efficient only for a limited number of functions, after which increasing the number of in-vehicle controls amplifies the detection of false commands.

Cite as

Daniel Cernea, Peter-Scott Olech, Achim Ebert, and Andreas Kerren. Controlling In-Vehicle Systems with a Commercial EEG Headset: Performance and Cognitive Load. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 113-122, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{cernea_et_al:OASIcs.VLUDS.2011.113,
  author =	{Cernea, Daniel and Olech, Peter-Scott and Ebert, Achim and Kerren, Andreas},
  title =	{{Controlling In-Vehicle Systems with a Commercial EEG Headset: Performance and Cognitive Load}},
  booktitle =	{Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
  pages =	{113--122},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-46-0},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{27},
  editor =	{Garth, Christoph and Middel, Ariane and Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.113},
  URN =		{urn:nbn:de:0030-drops-37459},
  doi =		{10.4230/OASIcs.VLUDS.2011.113},
  annote =	{Keywords: Brain-computer interface, EEG neuroheadset, EEG control, driver cog- nitive workload, in-vehicle systems.}
}
Document
A General Introduction To Graph Visualization Techniques

Authors: Raga'ad M. Tarawaneh, Patric Keller, and Achim Ebert

Published in: OASIcs, Volume 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011


Abstract
Generally, a graph is an abstract data type used to represent relations among a given set of data entities. Graphs are used in numerous applications within the field of information visualization, such as VLSI (circuit schematics), state-transition diagrams, and social networks. The size and complexity of graphs easily reach dimensions at which the task of exploring and navigating gets crucial. Moreover, additional requirements have to be met in order to provide proper visualizations. In this context, many techniques already have been introduced. This survey aims to provide an introduction on graph visualization techniques helping the reader to gain a first insight into the most fundamental techniques. Furthermore, a brief introduction about navigation and interaction tools is provided.

Cite as

Raga'ad M. Tarawaneh, Patric Keller, and Achim Ebert. A General Introduction To Graph Visualization Techniques. In Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011. Open Access Series in Informatics (OASIcs), Volume 27, pp. 151-164, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{tarawaneh_et_al:OASIcs.VLUDS.2011.151,
  author =	{Tarawaneh, Raga'ad M. and Keller, Patric and Ebert, Achim},
  title =	{{A General Introduction To Graph Visualization Techniques}},
  booktitle =	{Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011},
  pages =	{151--164},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-46-0},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{27},
  editor =	{Garth, Christoph and Middel, Ariane and Hagen, Hans},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.VLUDS.2011.151},
  URN =		{urn:nbn:de:0030-drops-37484},
  doi =		{10.4230/OASIcs.VLUDS.2011.151},
  annote =	{Keywords: Graph Visualization, Layout Algorithms, Graph Drawing, Interaction Techniques}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail