Search Results

Documents authored by Epting, Justin


Document
Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference

Authors: Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
At a global scale, cities are growing and characterizing the built environment is essential for deeper understanding of human population patterns, urban development, energy usage, climate change impacts, among others. Buildings are a key component of the built environment and significant progress has been made in recent years to scale building footprint extractions from satellite datum and other remotely sensed products. Billions of building footprints have recently been released by companies such as Microsoft and Google at a global scale. However, research has shown that depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in both the number and shape of footprints produced. Therefore, each footprint dataset should be examined and used on a case-by-case study. In this work, we find through two experiments on Oak Ridge National Laboratory and Microsoft footprints within the same geographic extent that our approach of inferring height from footprint morphology features is source agnostic. Regardless of the differences associated with the methods used to produce a building footprint dataset, our approach of inferring height was able to overcome these discrepancies between the products and generalize, as evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that our approach can be applied to the billions of open-source footprints which are freely available to infer height, a key building metric. This work impacts the broader domain of urban science in which building height is a key, and limiting factor.

Cite as

Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams. Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{stipek_et_al:LIPIcs.GIScience.2025.1,
  author =	{Stipek, Clinton and Hauser, Taylor and Epting, Justin and Moehl, Jessica and Adams, Daniel},
  title =	{{Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.1},
  URN =		{urn:nbn:de:0030-drops-238306},
  doi =		{10.4230/LIPIcs.GIScience.2025.1},
  annote =	{Keywords: Building Height, Big Data, Machine Learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail