Search Results

Documents authored by Escudero Gutiérrez, Francisco


Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
On Converses to the Polynomial Method

Authors: Jop Briët and Francisco Escudero Gutiérrez

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
A surprising "converse to the polynomial method" of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. A natural question posed there asks if bounded quartic polynomials can be approximated by 2-query quantum algorithms. Arunachalam, Palazuelos and the first author showed that there is no direct analogue of the result of Aaronson et al. in this case. We improve on this result in the following ways: First, we point out and fix a small error in the construction that has to do with a translation from cubic to quartic polynomials. Second, we give a completely explicit example based on techniques from additive combinatorics. Third, we show that the result still holds when we allow for a small additive error. For this, we apply an SDP characterization of Gribling and Laurent (QIP'19) for the completely-bounded approximate degree.

Cite as

Jop Briët and Francisco Escudero Gutiérrez. On Converses to the Polynomial Method. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{briet_et_al:LIPIcs.TQC.2022.6,
  author =	{Bri\"{e}t, Jop and Escudero Guti\'{e}rrez, Francisco},
  title =	{{On Converses to the Polynomial Method}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.6},
  URN =		{urn:nbn:de:0030-drops-165139},
  doi =		{10.4230/LIPIcs.TQC.2022.6},
  annote =	{Keywords: Quantum query complexity, polynomial method, completely bounded polynomials}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail