Search Results

Documents authored by Găină, Daniel


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Forcing, Transition Algebras, and Calculi

Authors: Go Hashimoto, Daniel Găină, and Ionuţ Ţuţu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We bring forward a logical system of transition algebras that enhances many-sorted first-order logic using features from dynamic logics. The sentences we consider include compositions, unions, and transitive closures of transition relations, which are treated similarly to the actions used in dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted first-order logic. We introduce syntactic entailment and study basic properties such as compactness and completeness, showing that the latter does not hold when standard finitary proof rules are used. Consequently, we define proof rules having both finite and countably infinite premises, and we provide conditions under which completeness can be proved. To that end, we generalize the forcing method introduced in model theory by Robinson from a single signature to a category of signatures, and we apply it to obtain a completeness result for signatures that are at most countable.

Cite as

Go Hashimoto, Daniel Găină, and Ionuţ Ţuţu. Forcing, Transition Algebras, and Calculi. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 143:1-143:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashimoto_et_al:LIPIcs.ICALP.2024.143,
  author =	{Hashimoto, Go and G\u{a}in\u{a}, Daniel and \c{T}u\c{t}u, Ionu\c{t}},
  title =	{{Forcing, Transition Algebras, and Calculi}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{143:1--143:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.143},
  URN =		{urn:nbn:de:0030-drops-202868},
  doi =		{10.4230/LIPIcs.ICALP.2024.143},
  annote =	{Keywords: Forcing, institution theory, calculi, algebraic specification, transition systems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail