Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)
Hu Ding, Jing Gao, and Jinhui Xu. Finding Global Optimum for Truth Discovery: Entropy Based Geometric Variance. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 34:1-34:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{ding_et_al:LIPIcs.SoCG.2016.34, author = {Ding, Hu and Gao, Jing and Xu, Jinhui}, title = {{Finding Global Optimum for Truth Discovery: Entropy Based Geometric Variance}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {34:1--34:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.34}, URN = {urn:nbn:de:0030-drops-59264}, doi = {10.4230/LIPIcs.SoCG.2016.34}, annote = {Keywords: geometric optimization, data mining, high dimension, entropy} }
Feedback for Dagstuhl Publishing