Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)
Iván Garzón, Pablo Mesejo, and Jesús Giráldez-Cru. On the Performance of Deep Generative Models of Realistic SAT Instances. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{garzon_et_al:LIPIcs.SAT.2022.3, author = {Garz\'{o}n, Iv\'{a}n and Mesejo, Pablo and Gir\'{a}ldez-Cru, Jes\'{u}s}, title = {{On the Performance of Deep Generative Models of Realistic SAT Instances}}, booktitle = {25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)}, pages = {3:1--3:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-242-6}, ISSN = {1868-8969}, year = {2022}, volume = {236}, editor = {Meel, Kuldeep S. and Strichman, Ofer}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.3}, URN = {urn:nbn:de:0030-drops-166775}, doi = {10.4230/LIPIcs.SAT.2022.3}, annote = {Keywords: Realistic SAT generators, pseudo-industrial random SAT, deep generative models, deep learning} }
Feedback for Dagstuhl Publishing