Search Results

Documents authored by Giraudo, Samuele


Document
Disorders and Permutations

Authors: Laurent Bulteau, Samuele Giraudo, and Stéphane Vialette

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
The additive x-disorder of a permutation is the sum of the absolute differences of all pairs of consecutive elements. We show that the additive x-disorder of a permutation of S(n), n ≥ 2, ranges from n-1 to ⌊n²/2⌋ - 1, and we give a complete characterization of permutations having extreme such values. Moreover, for any positive integers n and d such that n ≥ 2 and n-1 ≤ d ≤ ⌊n²/2⌋ - 1, we propose a linear-time algorithm to compute a permutation π ∈ S(n) with additive x-disorder d.

Cite as

Laurent Bulteau, Samuele Giraudo, and Stéphane Vialette. Disorders and Permutations. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bulteau_et_al:LIPIcs.CPM.2021.11,
  author =	{Bulteau, Laurent and Giraudo, Samuele and Vialette, St\'{e}phane},
  title =	{{Disorders and Permutations}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.11},
  URN =		{urn:nbn:de:0030-drops-139628},
  doi =		{10.4230/LIPIcs.CPM.2021.11},
  annote =	{Keywords: Permutation, Algorithm}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail