Search Results

Documents authored by Giridharan, Neil


Document
Granular Synchrony

Authors: Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, and Ling Ren

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Today’s mainstream network timing models for distributed computing are synchrony, partial synchrony, and asynchrony. These models are coarse-grained and often make either too strong or too weak assumptions about the network. This paper introduces a new timing model called granular synchrony that models the network as a mixture of synchronous, partially synchronous, and asynchronous communication links. The new model is not only theoretically interesting but also more representative of real-world networks. It also serves as a unifying framework where current mainstream models are its special cases. We present necessary and sufficient conditions for solving crash and Byzantine fault-tolerant consensus in granular synchrony. Interestingly, consensus among n parties can be achieved against f ≥ n/2 crash faults or f ≥ n/3 Byzantine faults without resorting to full synchrony.

Cite as

Neil Giridharan, Ittai Abraham, Natacha Crooks, Kartik Nayak, and Ling Ren. Granular Synchrony. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 30:1-30:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giridharan_et_al:LIPIcs.DISC.2024.30,
  author =	{Giridharan, Neil and Abraham, Ittai and Crooks, Natacha and Nayak, Kartik and Ren, Ling},
  title =	{{Granular Synchrony}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{30:1--30:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.30},
  URN =		{urn:nbn:de:0030-drops-212566},
  doi =		{10.4230/LIPIcs.DISC.2024.30},
  annote =	{Keywords: Timing model, synchrony, asynchrony, consensus, blockchain, fault tolerance}
}
Document
Brief Announcement
Brief Announcement: It’s not easy to relax: liveness in chained BFT protocols

Authors: Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard, and Florian Suri-Payer

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Modern chained BFT SMR protocols have poor liveness under failures as they require multiple consecutive honest leaders to commit a single block. Siesta, our proposed new BFT SMR protocol, is instead able to commit a block that spans multiple non-consecutive honest leaders. Siesta reduces the expected commit latency of HotStuff by a factor of three under failures, and the worst-case latency by a factor of eight.

Cite as

Ittai Abraham, Natacha Crooks, Neil Giridharan, Heidi Howard, and Florian Suri-Payer. Brief Announcement: It’s not easy to relax: liveness in chained BFT protocols. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 39:1-39:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abraham_et_al:LIPIcs.DISC.2022.39,
  author =	{Abraham, Ittai and Crooks, Natacha and Giridharan, Neil and Howard, Heidi and Suri-Payer, Florian},
  title =	{{Brief Announcement: It’s not easy to relax: liveness in chained BFT protocols}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{39:1--39:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.39},
  URN =		{urn:nbn:de:0030-drops-172305},
  doi =		{10.4230/LIPIcs.DISC.2022.39},
  annote =	{Keywords: Consensus, blockchain, BFT}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail