Search Results

Documents authored by Golebiewski, Zbigniew


Document
On the Number of Lambda Terms With Prescribed Size of Their De Bruijn Representation

Authors: Bernhard Gittenberger and Zbigniew Golebiewski

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
John Tromp introduced the so-called 'binary lambda calculus' as a way to encode lambda terms in terms of 0-1-strings. Later, Grygiel and Lescanne conjectured that the number of binary lambda terms with m free indices and of size n (encoded as binary words of length n) is o(n^{-3/2} tau^{-n}) for tau ~ 1.963448... . We generalize the proposed notion of size and show that for several classes of lambda terms, including binary lambda terms with m free indices, the number of terms of size n is Theta(n^{-3/2} * rho^{-n}) with some class dependent constant rho, which in particular disproves the above mentioned conjecture. A way to obtain lower and upper bounds for the constant near the leading term is presented and numerical results for a few previously introduced classes of lambda terms are given.

Cite as

Bernhard Gittenberger and Zbigniew Golebiewski. On the Number of Lambda Terms With Prescribed Size of Their De Bruijn Representation. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gittenberger_et_al:LIPIcs.STACS.2016.40,
  author =	{Gittenberger, Bernhard and Golebiewski, Zbigniew},
  title =	{{On the Number of Lambda Terms With Prescribed Size of Their De Bruijn Representation}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.40},
  URN =		{urn:nbn:de:0030-drops-57411},
  doi =		{10.4230/LIPIcs.STACS.2016.40},
  annote =	{Keywords: lambda calculus, terms enumeration, analytic combinatorics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail