Search Results

Documents authored by Gong, Zhaoya


Document
Short Paper
Uncovering Spatiotemporal Patterns of Travel Flows Under Extreme Weather Events by Tensor Decomposition (Short Paper)

Authors: Zhicheng Deng, Zhaoya Gong, and Pengjun Zhao

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Extreme weather events have caused dramatic damage to human society. Human mobility is one of the important aspects that are impacted significantly by extreme weather. Currently, focus on human mobility research during extreme weather is often limited to the transport infrastructure and emergency management perspectives, lacking a systematic understanding of the spatiotemporal patterns of human travel behavior. In this research, we examine the structural changes in human mobility under the severe rainstorm that occurred on July 20th, 2021 in Zhengzhou, Henan Province, China. Innovatively applying a tensor decomposition approach to analyzing spatiotemporal flows of human movements represented by the mobile phone big data, we extract the characteristic components of human travel behaviors from the spatial and temporal dimensions, which help discover and understand the latent spatiotemporal patterns hidden in human mobility data. This study provides a new methodological perspective and demonstrates that it can be useful for uncovering latent patterns of human mobility and identifying its structural changes during extreme weather events. This is of great importance to a better understanding of the behavioral side of human mobility and its response to external shocks and has significant implications for human-focused policies in urban risk mitigation and emergency response.

Cite as

Zhicheng Deng, Zhaoya Gong, and Pengjun Zhao. Uncovering Spatiotemporal Patterns of Travel Flows Under Extreme Weather Events by Tensor Decomposition (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 27:1-27:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.GIScience.2023.27,
  author =	{Deng, Zhicheng and Gong, Zhaoya and Zhao, Pengjun},
  title =	{{Uncovering Spatiotemporal Patterns of Travel Flows Under Extreme Weather Events by Tensor Decomposition}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{27:1--27:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.27},
  URN =		{urn:nbn:de:0030-drops-189228},
  doi =		{10.4230/LIPIcs.GIScience.2023.27},
  annote =	{Keywords: Urban travel behavior, Origin-Destination flows, Non-negative CP decomposition, Spatiotemporal analysis}
}
Document
Short Paper
Visual Methods for Representing Flow Space with Vector Fields (Short Paper)

Authors: Han Zhang, Zhaoya Gong, and Jean-Claude Thill

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
The issue of human mobility has been a focal point of research among numerous scholars in the field of geography for decades. Among them, the visualization of origin-destination (OD) data is an important branch of geographic flow studies. In this paper, we vectorize and represent immigration flows using OD flow data of U.S. immigrants in the year 2000, constructing an immigration space. Through data validation, it is confirmed that the vector field satisfies the Gauss’s theorem and is irrotational, demonstrating that the field can be derived from a potential and that the field is uniquely determined by the potential. Scalar potential fields are inferred from the vector field, providing a more intuitive and convenient description of the underlying flow patterns in geographical interaction matrices. Additionally, this paper employs potential fields and applies a density-equalizing areal cartogram to reconstruct the global representation of functional space, constructing cartogram maps based on potential magnitudes.

Cite as

Han Zhang, Zhaoya Gong, and Jean-Claude Thill. Visual Methods for Representing Flow Space with Vector Fields (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 90:1-90:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.GIScience.2023.90,
  author =	{Zhang, Han and Gong, Zhaoya and Thill, Jean-Claude},
  title =	{{Visual Methods for Representing Flow Space with Vector Fields}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{90:1--90:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.90},
  URN =		{urn:nbn:de:0030-drops-189852},
  doi =		{10.4230/LIPIcs.GIScience.2023.90},
  annote =	{Keywords: interstate migration, vector field, areal cartogram, geographic visualization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail