Search Results

Documents authored by Gordon, Spencer


Document
Track A: Algorithms, Complexity and Games
Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents

Authors: Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide polynomial-time reductions between three search problems from three distinct areas: the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orientation (USO), and a variant of the α-Ham Sandwich problem. For all three settings, we show that "two choices are enough", meaning that the general non-binary version of the problem can be reduced in polynomial time to the binary version. This specifically means that generalized P-LCPs are equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by showing that both the P-LCP and our α-Ham Sandwich variant are equivalent to a new problem we introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as P-LCPs.

Cite as

Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{borzechowski_et_al:LIPIcs.ICALP.2024.32,
  author =	{Borzechowski, Michaela and Fearnley, John and Gordon, Spencer and Savani, Rahul and Schnider, Patrick and Weber, Simon},
  title =	{{Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.32},
  URN =		{urn:nbn:de:0030-drops-201751},
  doi =		{10.4230/LIPIcs.ICALP.2024.32},
  annote =	{Keywords: P-LCP, Unique Sink Orientation, \alpha-Ham Sandwich, search complexity, TFNP, UEOPL}
}
Document
Track A: Algorithms, Complexity and Games
Unique End of Potential Line

Authors: John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The complexity class CLS was proposed by Daskalakis and Papadimitriou in 2011 to understand the complexity of important NP search problems that admit both path following and potential optimizing algorithms. Here we identify a subclass of CLS - called UniqueEOPL - that applies a more specific combinatorial principle that guarantees unique solutions. We show that UniqueEOPL contains several important problems such as the P-matrix Linear Complementarity Problem, finding Fixed Point of Contraction Maps, and solving Unique Sink Orientations (USOs). UniqueEOPL seems to a proper subclass of CLS and looks more likely to be the right class for the problems of interest. We identify a problem - closely related to solving contraction maps and USOs - that is complete for UniqueEOPL. Our results also give the fastest randomised algorithm for P-matrix LCP.

Cite as

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fearnley_et_al:LIPIcs.ICALP.2019.56,
  author =	{Fearnley, John and Gordon, Spencer and Mehta, Ruta and Savani, Rahul},
  title =	{{Unique End of Potential Line}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{56:1--56:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.56},
  URN =		{urn:nbn:de:0030-drops-106327},
  doi =		{10.4230/LIPIcs.ICALP.2019.56},
  annote =	{Keywords: P-matrix linear complementarity problem, unique sink orientation, contraction map, TFNP, total search problems, continuous local search}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail