Search Results

Documents authored by Gupta, Varun


Document
Look Before, Before You Leap: Online Vector Load Balancing with Few Reassignments

Authors: Varun Gupta, Ravishankar Krishnaswamy, Sai Sandeep, and Janani Sundaresan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this paper we study two fully-dynamic multi-dimensional vector load balancing problems with recourse. The adversary presents a stream of n job insertions and deletions, where each job j is a vector in ℝ^d_{≥ 0}. In the vector scheduling problem, the algorithm must maintain an assignment of the active jobs to m identical machines to minimize the makespan (maximum load on any dimension on any machine). In the vector bin packing problem, the algorithm must maintain an assignment of active jobs into a number of bins of unit capacity in all dimensions, to minimize the number of bins currently used. In both problems, the goal is to maintain solutions that are competitive against the optimal solution for the active set of jobs, at every time instant. The algorithm is allowed to change the assignment from time to time, with the secondary objective of minimizing the amortized recourse, which is the average cardinality of the change of the assignment per update to the instance. For the vector scheduling problem, we present two simple algorithms. The first is a randomized algorithm with an O(1) amortized recourse and an O(log d/log log d) competitive ratio against oblivious adversaries. The second algorithm is a deterministic algorithm that is competitive against adaptive adversaries but with a slightly higher competitive ratio of O(log d) and a per-job recourse guarantee bounded by Õ(log n + log d log OPT). We also prove a sharper instance-dependent recourse guarantee for the deterministic algorithm. For the vector bin packing problem, we make the so-called small jobs assumption that the size of all jobs in all the coordinates is O(1/log d) and present a simple O(1)-competitive algorithm with O(log n) recourse against oblivious adversaries. For both problems, the main challenge is to determine when and how to migrate jobs to maintain competitive solutions. Our central idea is that for each job, we make these decisions based only on the active set of jobs that are "earlier" than this job in some ordering ≺ of the jobs.

Cite as

Varun Gupta, Ravishankar Krishnaswamy, Sai Sandeep, and Janani Sundaresan. Look Before, Before You Leap: Online Vector Load Balancing with Few Reassignments. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 65:1-65:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ITCS.2023.65,
  author =	{Gupta, Varun and Krishnaswamy, Ravishankar and Sandeep, Sai and Sundaresan, Janani},
  title =	{{Look Before, Before You Leap: Online Vector Load Balancing with Few Reassignments}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{65:1--65:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.65},
  URN =		{urn:nbn:de:0030-drops-175685},
  doi =		{10.4230/LIPIcs.ITCS.2023.65},
  annote =	{Keywords: Vector Scheduling, Vector Load Balancing}
}
Document
Online Multivalid Learning: Means, Moments, and Prediction Intervals

Authors: Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present a general, efficient technique for providing contextual predictions that are "multivalid" in various senses, against an online sequence of adversarially chosen examples (x,y). This means that the resulting estimates correctly predict various statistics of the labels y not just marginally - as averaged over the sequence of examples - but also conditionally on x ∈ G for any G belonging to an arbitrary intersecting collection of groups 𝒢. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from [Hébert-Johnson et al., 2018]. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from [Jung et al., 2021]. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees.

Cite as

Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth. Online Multivalid Learning: Means, Moments, and Prediction Intervals. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 82:1-82:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ITCS.2022.82,
  author =	{Gupta, Varun and Jung, Christopher and Noarov, Georgy and Pai, Mallesh M. and Roth, Aaron},
  title =	{{Online Multivalid Learning: Means, Moments, and Prediction Intervals}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{82:1--82:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.82},
  URN =		{urn:nbn:de:0030-drops-156785},
  doi =		{10.4230/LIPIcs.ITCS.2022.82},
  annote =	{Keywords: Uncertainty Estimation, Calibration, Online Learning}
}
Document
APPROX
Permutation Strikes Back: The Power of Recourse in Online Metric Matching

Authors: Varun Gupta, Ravishankar Krishnaswamy, and Sai Sandeep

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
In this paper, we study the online metric matching with recourse (OMM-Recourse) problem. Given a metric space with k servers, a sequence of clients is revealed online. A client must be matched to an available server on arrival. Unlike the classical online matching model where the match is irrevocable, the recourse model permits the algorithm to rematch existing clients upon the arrival of a new client. The goal is to maintain an online matching with a near-optimal total cost, while at the same time not rematching too many clients. For the classical online metric matching problem without recourse, the optimal competitive ratio for deterministic algorithms is 2k-1, and the best-known randomized algorithms have competitive ratio O(log² k). For the much-studied special case of line metric, the best-known algorithms have competitive ratios of O(log k). Improving these competitive ratios (or showing lower bounds) are important open problems in this line of work. In this paper, we show that logarithmic recourse significantly improves the quality of matchings we can maintain online. For general metrics, we show a deterministic O(log k)-competitive algorithm, with O(log k) recourse per client, an exponential improvement over the 2k-1 lower bound without recourse. For line metrics we show a deterministic 3-competitive algorithm with O(log k) amortized recourse, again improving the best-known O(log k)-competitive algorithms without recourse. The first result (general metrics) simulates a batched version of the classical algorithm for OMM called Permutation. The second result (line metric) also uses Permutation as the foundation but makes non-trivial changes to the matching to balance the competitive ratio and recourse. Finally, we also consider the model when both clients and servers may arrive or depart dynamically, and exhibit a simple randomized O(log n)-competitive algorithm with O(log Δ) recourse, where n and Δ are the number of points and the aspect ratio of the underlying metric. We remark that no non-trivial bounds are possible in this fully-dynamic model when no recourse is allowed.

Cite as

Varun Gupta, Ravishankar Krishnaswamy, and Sai Sandeep. Permutation Strikes Back: The Power of Recourse in Online Metric Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2020.40,
  author =	{Gupta, Varun and Krishnaswamy, Ravishankar and Sandeep, Sai},
  title =	{{Permutation Strikes Back: The Power of Recourse in Online Metric Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.40},
  URN =		{urn:nbn:de:0030-drops-126431},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.40},
  annote =	{Keywords: online algorithms, bipartite matching}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail