Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)
Nader H. Bshouty and George Haddad. Approximating the Number of Relevant Variables in a Parity Implies Proper Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{bshouty_et_al:LIPIcs.APPROX/RANDOM.2024.38, author = {Bshouty, Nader H. and Haddad, George}, title = {{Approximating the Number of Relevant Variables in a Parity Implies Proper Learning}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)}, pages = {38:1--38:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-348-5}, ISSN = {1868-8969}, year = {2024}, volume = {317}, editor = {Kumar, Amit and Ron-Zewi, Noga}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.38}, URN = {urn:nbn:de:0030-drops-210316}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2024.38}, annote = {Keywords: PAC Learning, Random Classification Noise, Uniform Distribution, Parity, Sparcity Approximation} }
Feedback for Dagstuhl Publishing