Search Results

Documents authored by Haghtalab, Nika


Document
Smooth Nash Equilibria: Algorithms and Complexity

Authors: Constantinos Daskalakis, Noah Golowich, Nika Haghtalab, and Abhishek Shetty

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called σ-smooth Nash equilibrium, for a {smoothness parameter} σ. In a σ-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a σ-smooth strategy, which is a distribution that does not put too much mass (as parametrized by σ) on any fixed action. We distinguish two variants of σ-smooth Nash equilibria: strong σ-smooth Nash equilibria, in which players are required to play σ-smooth strategies under equilibrium play, and weak σ-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong σ-smooth Nash equilibria have superior computational properties to Nash equilibria: when σ as well as an approximation parameter ϵ and the number of players are all constants, there is a {constant-time} randomized algorithm to find a weak ϵ-approximate σ-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong ϵ-approximate σ-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing ϵ-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to complexity-theoretic assumptions. We complement our upper bounds by showing that when either σ or ϵ is an inverse polynomial, finding a weak ϵ-approximate σ-smooth Nash equilibria becomes computationally intractable. Our results are the first to propose a variant of Nash equilibrium which is computationally tractable, allows players to act independently, and which, as we discuss, is justified by an extensive line of work on individual choice behavior in the economics literature.

Cite as

Constantinos Daskalakis, Noah Golowich, Nika Haghtalab, and Abhishek Shetty. Smooth Nash Equilibria: Algorithms and Complexity. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 37:1-37:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{daskalakis_et_al:LIPIcs.ITCS.2024.37,
  author =	{Daskalakis, Constantinos and Golowich, Noah and Haghtalab, Nika and Shetty, Abhishek},
  title =	{{Smooth Nash Equilibria: Algorithms and Complexity}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{37:1--37:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.37},
  URN =		{urn:nbn:de:0030-drops-195657},
  doi =		{10.4230/LIPIcs.ITCS.2024.37},
  annote =	{Keywords: Nash equilibrium, smoothed analysis, PPAD}
}
Document
Extended Abstract
Communicating with Anecdotes (Extended Abstract)

Authors: Nika Haghtalab, Nicole Immorlica, Brendan Lucier, Markus Mobius, and Divyarthi Mohan

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study a communication game between a sender and receiver. The sender chooses one of her signals about the state of the world (i.e., an anecdote) and communicates it to the receiver who takes an action affecting both players. The sender and receiver both care about the state of the world but are also influenced by personal preferences, so their ideal actions can differ. We characterize perfect Bayesian equilibria. The sender faces a temptation to persuade: she wants to select a biased anecdote to influence the receiver’s action. Anecdotes are still informative to the receiver (who will debias at equilibrium) but the attempt to persuade comes at the cost of precision. This gives rise to informational homophily where the receiver prefers to listen to like-minded senders because they provide higher-precision signals. Communication becomes polarized when the sender is an expert with access to many signals, with the sender choosing extreme outlier anecdotes at equilibrium (unless preferences are perfectly aligned). This polarization dissipates all the gains from communication with an increasingly well-informed sender when the anecdote distribution is heavy-tailed. Experts therefore face a curse of informedness: receivers will prefer to listen to less-informed senders who cannot pick biased signals as easily.

Cite as

Nika Haghtalab, Nicole Immorlica, Brendan Lucier, Markus Mobius, and Divyarthi Mohan. Communicating with Anecdotes (Extended Abstract). In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 57:1-57:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haghtalab_et_al:LIPIcs.ITCS.2024.57,
  author =	{Haghtalab, Nika and Immorlica, Nicole and Lucier, Brendan and Mobius, Markus and Mohan, Divyarthi},
  title =	{{Communicating with Anecdotes}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{57:1--57:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.57},
  URN =		{urn:nbn:de:0030-drops-195852},
  doi =		{10.4230/LIPIcs.ITCS.2024.57},
  annote =	{Keywords: Communication game, Equilibrium, Polarization, Signalling}
}
Document
k-Center Clustering Under Perturbation Resilience

Authors: Maria-Florina Balcan, Nika Haghtalab, and Colin White

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
The k-center problem is a canonical and long-studied facility location and clustering problem with many applications in both its symmetric and asymmetric forms. Both versions of the problem have tight approximation factors on worst case instances: a 2-approximation for symmetric kcenter and an O(log*(k))-approximation for the asymmetric version. Therefore to improve on these ratios, one must go beyond the worst case. In this work, we take this approach and provide strong positive results both for the asymmetric and symmetric k-center problems under a very natural input stability (promise) condition called alpha-perturbation resilience [Bilu Linial, 2012], which states that the optimal solution does not change under any alpha-factor perturbation to the input distances. We show that by assuming 2-perturbation resilience, the exact solution for the asymmetric k-center problem can be found in polynomial time. To our knowledge, this is the first problem that is hard to approximate to any constant factor in the worst case, yet can be optimally solved in polynomial time under perturbation resilience for a constant value of alpha. Furthermore, we prove our result is tight by showing symmetric k-center under (2-epsilon)-perturbation resilience is hard unless NP=RP. This is the first tight result for any problem under perturbation resilience, i.e., this is the first time the exact value of alpha for which the problem switches from being NP-hard to efficiently computable has been found. Our results illustrate a surprising relationship between symmetric and asymmetric k-center instances under perturbation resilience. Unlike approximation ratio, for which symmetric k-center is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any constant factor, both symmetric and asymmetric k-center can be solved optimally under resilience to 2-perturbations.

Cite as

Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-Center Clustering Under Perturbation Resilience. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 68:1-68:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{balcan_et_al:LIPIcs.ICALP.2016.68,
  author =	{Balcan, Maria-Florina and Haghtalab, Nika and White, Colin},
  title =	{{k-Center Clustering Under Perturbation Resilience}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{68:1--68:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.68},
  URN =		{urn:nbn:de:0030-drops-62160},
  doi =		{10.4230/LIPIcs.ICALP.2016.68},
  annote =	{Keywords: k-center, clustering, perturbation resilience}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail