Search Results

Documents authored by Haslebacher, Sebastian


Document
On the Exact Matching Problem in Dense Graphs

Authors: Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the Exact Matching problem, we are given a graph whose edges are colored red or blue and the task is to decide for a given integer k, if there is a perfect matching with exactly k red edges. Since 1987 it is known that the Exact Matching Problem can be solved in randomized polynomial time. Despite numerous efforts, it is still not known today whether a deterministic polynomial-time algorithm exists as well. In this paper, we make substantial progress by solving the problem for a multitude of different classes of dense graphs. We solve the Exact Matching problem in deterministic polynomial time for complete r-partite graphs, for unit interval graphs, for bipartite unit interval graphs, for graphs of bounded neighborhood diversity, for chain graphs, and for graphs without a complete bipartite t-hole. We solve the problem in quasi-polynomial time for Erdős-Rényi random graphs G(n, 1/2). We also reprove an earlier result for bounded independence number/bipartite independence number. We use two main tools to obtain these results: A local search algorithm as well as a generalization of an earlier result by Karzanov.

Cite as

Nicolas El Maalouly, Sebastian Haslebacher, and Lasse Wulf. On the Exact Matching Problem in Dense Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{elmaalouly_et_al:LIPIcs.STACS.2024.33,
  author =	{El Maalouly, Nicolas and Haslebacher, Sebastian and Wulf, Lasse},
  title =	{{On the Exact Matching Problem in Dense Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.33},
  URN =		{urn:nbn:de:0030-drops-197437},
  doi =		{10.4230/LIPIcs.STACS.2024.33},
  annote =	{Keywords: Exact Matching, Perfect Matching, Red-Blue Matching, Bounded Color Matching, Local Search, Derandomization}
}
Document
Track A: Algorithms, Complexity and Games
A Subexponential Algorithm for ARRIVAL

Authors: Bernd Gärtner, Sebastian Haslebacher, and Hung P. Hoang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The ARRIVAL problem is to decide the fate of a train moving along the edges of a directed graph, according to a simple (deterministic) pseudorandom walk. The problem is in NP∩coNP but not known to be in 𝖯. The currently best algorithms have runtime 2^Θ(n) where n is the number of vertices. This is not much better than just performing the pseudorandom walk. We develop a subexponential algorithm with runtime 2^O(√nlog n). We also give a polynomial-time algorithm if the graph is almost acyclic. Both results are derived from a new general approach to solve ARRIVAL instances.

Cite as

Bernd Gärtner, Sebastian Haslebacher, and Hung P. Hoang. A Subexponential Algorithm for ARRIVAL. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 69:1-69:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gartner_et_al:LIPIcs.ICALP.2021.69,
  author =	{G\"{a}rtner, Bernd and Haslebacher, Sebastian and Hoang, Hung P.},
  title =	{{A Subexponential Algorithm for ARRIVAL}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{69:1--69:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.69},
  URN =		{urn:nbn:de:0030-drops-141387},
  doi =		{10.4230/LIPIcs.ICALP.2021.69},
  annote =	{Keywords: Pseudorandom walks, reachability, graph games, switching systems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail