Search Results

Documents authored by Heimann, Sophia


Document
Track A: Algorithms, Complexity and Games
The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5

Authors: Sophia Heimann, Hung P. Hoang, and Stefan Hougardy

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The k-Opt algorithm is a local search algorithm for the Traveling Salesman Problem. Starting with an initial tour, it iteratively replaces at most k edges in the tour with the same number of edges to obtain a better tour. Krentel (FOCS 1989) showed that the Traveling Salesman Problem with the k-Opt neighborhood is complete for the class PLS (polynomial time local search) and that the k-Opt algorithm can have exponential running time for any pivot rule. However, his proof requires k ≫ 1000 and has a substantial gap. We show the two properties above for a much smaller value of k, addressing an open question by Monien, Dumrauf, and Tscheuschner (ICALP 2010). In particular, we prove the PLS-completeness for k ≥ 17 and the exponential running time for k ≥ 5.

Cite as

Sophia Heimann, Hung P. Hoang, and Stefan Hougardy. The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 84:1-84:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heimann_et_al:LIPIcs.ICALP.2024.84,
  author =	{Heimann, Sophia and Hoang, Hung P. and Hougardy, Stefan},
  title =	{{The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{84:1--84:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.84},
  URN =		{urn:nbn:de:0030-drops-202270},
  doi =		{10.4230/LIPIcs.ICALP.2024.84},
  annote =	{Keywords: Traveling Salesman Problem, k-Opt algorithm, PLS-completeness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail