Search Results

Documents authored by Huang, Qin


Found 2 Possible Name Variants:

Huang, Qin

Document
Near-Optimal Algorithms for Point-Line Covering Problems

Authors: Jianer Chen, Qin Huang, Iyad Kanj, and Ge Xia

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
We study fundamental point-line covering problems in computational geometry, in which the input is a set S of points in the plane. The first is the Rich Lines problem, which asks for the set of all lines that each covers at least λ points from S, for a given integer parameter λ ≥ 2; this problem subsumes the 3-Points-on-Line problem and the Exact Fitting problem, which - the latter - asks for a line containing the maximum number of points. The second is the NP-hard problem Line Cover, which asks for a set of k lines that cover the points of S, for a given parameter k ∈ ℕ. Both problems have been extensively studied. In particular, the Rich Lines problem is a fundamental problem whose solution serves as a building block for several algorithms in computational geometry. For Rich Lines and Exact Fitting, we present a randomized Monte Carlo algorithm that achieves a lower running time than that of Guibas et al.’s algorithm [Computational Geometry 1996], for a wide range of the parameter λ. We derive lower-bound results showing that, for λ = Ω(√{n log n}), the upper bound on the running time of this randomized algorithm matches the lower bound that we derive on the time complexity of Rich Lines in the algebraic computation trees model. For Line Cover, we present two kernelization algorithms: a randomized Monte Carlo algorithm and a deterministic algorithm. Both algorithms improve the running time of existing kernelization algorithms for Line Cover. We derive lower-bound results showing that the running time of the randomized algorithm we present comes close to the lower bound we derive on the time complexity of kernelization algorithms for Line Cover in the algebraic computation trees model.

Cite as

Jianer Chen, Qin Huang, Iyad Kanj, and Ge Xia. Near-Optimal Algorithms for Point-Line Covering Problems. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.STACS.2022.21,
  author =	{Chen, Jianer and Huang, Qin and Kanj, Iyad and Xia, Ge},
  title =	{{Near-Optimal Algorithms for Point-Line Covering Problems}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.21},
  URN =		{urn:nbn:de:0030-drops-158312},
  doi =		{10.4230/LIPIcs.STACS.2022.21},
  annote =	{Keywords: line cover, rich lines, exact fitting, kernelization, randomized algorithms, complexity lower bounds, algebraic computation trees}
}
Document
Streaming Algorithms for Graph k-Matching with Optimal or Near-Optimal Update Time

Authors: Jianer Chen, Qin Huang, Iyad Kanj, Qian Li, and Ge Xia

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We present streaming algorithms for the graph k-matching problem in both the insert-only and dynamic models. Our algorithms, while keeping the space complexity matching the best known upper bound, have optimal or near-optimal update time, significantly improving on previous results. More specifically, for the insert-only streaming model, we present a one-pass randomized algorithm that runs in optimal 𝒪(k²) space and has optimal 𝒪(1) update time, and that, w.h.p. (with high probability), computes a maximum weighted k-matching of a weighted graph. Previously, the best upper bound on the update time was 𝒪(log k), which was achieved by a deterministic streaming algorithm that however only works for unweighted graphs [Stefan Fafianie and Stefan Kratsch, 2014]. For the dynamic streaming model, we present a one-pass randomized algorithm that, w.h.p., computes a maximum weighted k-matching of a weighted graph in Õ(Wk²) space and with Õ(1) update time, where W is the number of distinct edge weights. Again the update time of our algorithm improves the previous best upper bound Õ(k²) [Rajesh Chitnis et al., 2016]. Moreover, we prove that in the dynamic streaming model, any randomized streaming algorithm for the problem requires k²⋅ Ω(W(log W+1)) bits of space. Hence, both the space and update-time complexities achieved by our algorithm in the dynamic model are near-optimal. A streaming approximation algorithm for k-matching is also presented, whose space complexity matches the best known upper bound with a significantly improved update time.

Cite as

Jianer Chen, Qin Huang, Iyad Kanj, Qian Li, and Ge Xia. Streaming Algorithms for Graph k-Matching with Optimal or Near-Optimal Update Time. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 48:1-48:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2021.48,
  author =	{Chen, Jianer and Huang, Qin and Kanj, Iyad and Li, Qian and Xia, Ge},
  title =	{{Streaming Algorithms for Graph k-Matching with Optimal or Near-Optimal Update Time}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.48},
  URN =		{urn:nbn:de:0030-drops-154816},
  doi =		{10.4230/LIPIcs.ISAAC.2021.48},
  annote =	{Keywords: streaming algorithms, matching, parameterized algorithms, lower bounds}
}

Huang, Qingqing

Document
Recovering Structured Probability Matrices

Authors: Qingqing Huang, Sham M. Kakade, Weihao Kong, and Gregory Valiant

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
We consider the problem of accurately recovering a matrix B of size M by M, which represents a probability distribution over M^2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Many aspects of this problem---both in terms of learning and property testing/estimation and on both the algorithmic and information theoretic sides---remain open. Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient (and practically viable) algorithm that accurately recovers the underlying M by M matrix using O(M) samples} (where we assume the rank is a constant). This linear sample complexity is optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. Additionally, we provide an even stronger lower bound showing that distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by a well-conditioned Hidden Markov Model with two hidden states requires Omega(M) observations, while our positive results for recovering B immediately imply that Omega(M) observations suffice to learn such an HMM. This lower bound precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs.

Cite as

Qingqing Huang, Sham M. Kakade, Weihao Kong, and Gregory Valiant. Recovering Structured Probability Matrices. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 46:1-46:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ITCS.2018.46,
  author =	{Huang, Qingqing and Kakade, Sham M. and Kong, Weihao and Valiant, Gregory},
  title =	{{Recovering Structured Probability Matrices}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{46:1--46:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.46},
  URN =		{urn:nbn:de:0030-drops-83625},
  doi =		{10.4230/LIPIcs.ITCS.2018.46},
  annote =	{Keywords: Random matrices, matrix recovery, stochastic block model, Hidden Markov Models}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail