Search Results

Documents authored by Huber, Simon


Document
Homotopy Canonicity for Cubical Type Theory

Authors: Thierry Coquand, Simon Huber, and Christian Sattler

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
Cubical type theory provides a constructive justification of homotopy type theory and satisfies canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type theory is a path lifting operation which is explained computationally by induction on the type involving several non-canonical choices. In this paper we show by a sconing argument that if we remove these equations for the path lifting operation from the system, we still retain homotopy canonicity: every natural number is path equal to a numeral.

Cite as

Thierry Coquand, Simon Huber, and Christian Sattler. Homotopy Canonicity for Cubical Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{coquand_et_al:LIPIcs.FSCD.2019.11,
  author =	{Coquand, Thierry and Huber, Simon and Sattler, Christian},
  title =	{{Homotopy Canonicity for Cubical Type Theory}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.11},
  URN =		{urn:nbn:de:0030-drops-105188},
  doi =		{10.4230/LIPIcs.FSCD.2019.11},
  annote =	{Keywords: cubical type theory, univalence, canonicity, sconing, Artin glueing}
}
Document
Gluing for Type Theory

Authors: Ambrus Kaposi, Simon Huber, and Christian Sattler

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
The relationship between categorical gluing and proofs using the logical relation technique is folklore. In this paper we work out this relationship for Martin-Löf type theory and show that parametricity and canonicity arise as special cases of gluing. The input of gluing is two models of type theory and a pseudomorphism between them and the output is a displayed model over the first model. A pseudomorphism preserves the categorical structure strictly, the empty context and context extension up to isomorphism, and there are no conditions on preservation of type formers. We look at three examples of pseudomorphisms: the identity on the syntax, the interpretation into the set model and the global section functor. Gluing along these result in syntactic parametricity, semantic parametricity and canonicity, respectively.

Cite as

Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2019.25,
  author =	{Kaposi, Ambrus and Huber, Simon and Sattler, Christian},
  title =	{{Gluing for Type Theory}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.25},
  URN =		{urn:nbn:de:0030-drops-105323},
  doi =		{10.4230/LIPIcs.FSCD.2019.25},
  annote =	{Keywords: Martin-L\"{o}f type theory, logical relations, parametricity, canonicity, quotient inductive types}
}
Document
Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom

Authors: Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg

Published in: LIPIcs, Volume 69, 21st International Conference on Types for Proofs and Programs (TYPES 2015) (2018)


Abstract
This paper presents a type theory in which it is possible to directly manipulate $n$-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky's univalence axiom is provable in this system. We also explain an extension with some higher inductive types like the circle and propositional truncation. Finally we provide semantics for this cubical type theory in a constructive meta-theory.

Cite as

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 69, pp. 5:1-5:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.TYPES.2015.5,
  author =	{Cohen, Cyril and Coquand, Thierry and Huber, Simon and M\"{o}rtberg, Anders},
  title =	{{Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom}},
  booktitle =	{21st International Conference on Types for Proofs and Programs (TYPES 2015)},
  pages =	{5:1--5:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-030-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{69},
  editor =	{Uustalu, Tarmo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.5},
  URN =		{urn:nbn:de:0030-drops-84754},
  doi =		{10.4230/LIPIcs.TYPES.2015.5},
  annote =	{Keywords: univalence axiom, dependent type theory, cubical sets}
}
Document
A Model of Type Theory in Cubical Sets

Authors: Marc Bezem, Thierry Coquand, and Simon Huber

Published in: LIPIcs, Volume 26, 19th International Conference on Types for Proofs and Programs (TYPES 2013)


Abstract
We present a model of type theory with dependent product, sum, and identity, in cubical sets. We describe a universe and explain how to transform an equivalence between two types into an equality. We also explain how to model propositional truncation and the circle. While not expressed internally in type theory, the model is expressed in a constructive metalogic. Thus it is a step towards a computational interpretation of Voevodsky's Univalence Axiom.

Cite as

Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type Theory in Cubical Sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 26, pp. 107-128, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{bezem_et_al:LIPIcs.TYPES.2013.107,
  author =	{Bezem, Marc and Coquand, Thierry and Huber, Simon},
  title =	{{A Model of Type Theory in Cubical Sets}},
  booktitle =	{19th International Conference on Types for Proofs and Programs (TYPES 2013)},
  pages =	{107--128},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-72-9},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{26},
  editor =	{Matthes, Ralph and Schubert, Aleksy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2013.107},
  URN =		{urn:nbn:de:0030-drops-46284},
  doi =		{10.4230/LIPIcs.TYPES.2013.107},
  annote =	{Keywords: Models of dependent type theory, cubical sets, Univalent Foundations}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail