Search Results

Documents authored by Huszár, Kristóf


Document
On the Width of Complicated JSJ Decompositions

Authors: Kristóf Huszár and Jonathan Spreer

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Motivated by the algorithmic study of 3-dimensional manifolds, we explore the structural relationship between the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of Bachman, Derby-Talbot and Sedgwick, we show that a "sufficiently complicated" JSJ decomposition of a 3-manifold enforces a "complicated structure" for all of its triangulations. More concretely, we show that, under certain conditions, the treewidth (resp. pathwidth) of the graph that captures the incidences between the pieces of the JSJ decomposition of an irreducible, closed, orientable 3-manifold M yields a linear lower bound on its treewidth tw (M) (resp. pathwidth pw(M)), defined as the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M. We present several applications of this result. We give the first example of an infinite family of bounded-treewidth 3-manifolds with unbounded pathwidth. We construct Haken 3-manifolds with arbitrarily large treewidth - previously the existence of such 3-manifolds was only known in the non-Haken case. We also show that the problem of providing a constant-factor approximation for the treewidth (resp. pathwidth) of bounded-degree graphs efficiently reduces to computing a constant-factor approximation for the treewidth (resp. pathwidth) of 3-manifolds.

Cite as

Kristóf Huszár and Jonathan Spreer. On the Width of Complicated JSJ Decompositions. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 42:1-42:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{huszar_et_al:LIPIcs.SoCG.2023.42,
  author =	{Husz\'{a}r, Krist\'{o}f and Spreer, Jonathan},
  title =	{{On the Width of Complicated JSJ Decompositions}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{42:1--42:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.42},
  URN =		{urn:nbn:de:0030-drops-178920},
  doi =		{10.4230/LIPIcs.SoCG.2023.42},
  annote =	{Keywords: computational 3-manifold topology, fixed-parameter tractability, generalized Heegaard splittings, JSJ decompositions, pathwidth, treewidth, triangulations}
}
Document
3-Manifold Triangulations with Small Treewidth

Authors: Kristóf Huszár and Jonathan Spreer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth of the face pairing graph of any triangulation T of M. In this setting the relationship between the topology of a 3-manifold and its treewidth is of particular interest. First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable 3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M. In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the Heegaard genus and the treewidth are within a constant factor. Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for every spherical 3-manifold we exhibit a triangulation of treewidth at most two. Our results further validate the parameter of treewidth (and other related parameters such as cutwidth or congestion) to be useful for topological computing, and also shed more light on the scope of existing FPT-algorithms in the field.

Cite as

Kristóf Huszár and Jonathan Spreer. 3-Manifold Triangulations with Small Treewidth. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{huszar_et_al:LIPIcs.SoCG.2019.44,
  author =	{Husz\'{a}r, Krist\'{o}f and Spreer, Jonathan},
  title =	{{3-Manifold Triangulations with Small Treewidth}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.44},
  URN =		{urn:nbn:de:0030-drops-104487},
  doi =		{10.4230/LIPIcs.SoCG.2019.44},
  annote =	{Keywords: computational 3-manifold topology, fixed-parameter tractability, layered triangulations, structural graph theory, treewidth, cutwidth, Heegaard genus, lens spaces, Seifert fibered spaces}
}
Document
On the Treewidth of Triangulated 3-Manifolds

Authors: Kristóf Huszár, Jonathan Spreer, and Uli Wagner

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 48(k+1) (resp. 4(3k+1)).

Cite as

Kristóf Huszár, Jonathan Spreer, and Uli Wagner. On the Treewidth of Triangulated 3-Manifolds. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huszar_et_al:LIPIcs.SoCG.2018.46,
  author =	{Husz\'{a}r, Krist\'{o}f and Spreer, Jonathan and Wagner, Uli},
  title =	{{On the Treewidth of Triangulated 3-Manifolds}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.46},
  URN =		{urn:nbn:de:0030-drops-87591},
  doi =		{10.4230/LIPIcs.SoCG.2018.46},
  annote =	{Keywords: computational topology, triangulations of 3-manifolds, thin position, fixed-parameter tractability, congestion, treewidth}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail