Search Results

Documents authored by Jabbari, Hosna


Document
SparseRNAFolD: Sparse RNA Pseudoknot-Free Folding Including Dangles

Authors: Mateo Gray, Sebastian Will, and Hosna Jabbari

Published in: LIPIcs, Volume 273, 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)


Abstract
Motivation. Computational RNA secondary structure prediction by free energy minimization is indispensable for analyzing structural RNAs and their interactions. These methods find the structure with the minimum free energy (MFE) among exponentially many possible structures and have a restrictive time and space complexity (O(n³) time and O(n²) space for pseudoknot-free structures) for longer RNA sequences. Furthermore, accurate free energy calculations, including dangles contributions can be difficult and costly to implement, particularly when optimizing for time and space requirements. Results. Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure prediction algorithm, SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle contributions. While the sparsification technique was previously employed to improve the time and space complexity of a pseudoknot-free structure prediction method with a realistic energy model, SparseMFEFold, it was not extended to include dangle contributions due to the complexity of computation. This may come at the cost of prediction accuracy. In this work, we compare three different sparsified implementations for dangles contributions and provide pros and cons of each method. As well, we compare our algorithm to LinearFold, a linear time and space algorithm, where we find that in practice, SparseRNAFolD has lower memory consumption across all lengths of sequence and a faster time for lengths up to 1000 bases. Conclusion. Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality of result and employs the most general energy model, including dangle contributions. We provide a basis for applying dangles to sparsified recursion in a pseudoknot-free model that has the ability to be extended to pseudoknots.

Cite as

Mateo Gray, Sebastian Will, and Hosna Jabbari. SparseRNAFolD: Sparse RNA Pseudoknot-Free Folding Including Dangles. In 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 273, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gray_et_al:LIPIcs.WABI.2023.19,
  author =	{Gray, Mateo and Will, Sebastian and Jabbari, Hosna},
  title =	{{SparseRNAFolD: Sparse RNA Pseudoknot-Free Folding Including Dangles}},
  booktitle =	{23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-294-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{273},
  editor =	{Belazzougui, Djamal and Ouangraoua, A\"{i}da},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2023.19},
  URN =		{urn:nbn:de:0030-drops-186454},
  doi =		{10.4230/LIPIcs.WABI.2023.19},
  annote =	{Keywords: RNA, MFE, Secondary Structure Prediction, Dangle, Sparsification, Space Complexity, Time Complexity}
}
Document
Sparsification Enables Predicting Kissing Hairpin Pseudoknot Structures of Long RNAs in Practice

Authors: Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
While computational RNA secondary structure prediction is an important tool in RNA research, it is still fundamentally limited to pseudoknot-free structures (or at best very simple pseudoknots) in practice. Here, we make the prediction of complex pseudoknots - including kissing hairpin structures - practically applicable by reducing the originally high space consumption. For this aim, we apply the technique of sparsification and other space-saving modifications to the recurrences of the pseudoknot prediction algorithm by Chen, Condon and Jabbari (CCJ algorithm). Thus, the theoretical space complexity of free energy minimization is reduced to Theta(n^3+Z), in the sequence length n and the number of non-optimally decomposable fragments ("candidates") Z. The sparsified CCJ algorithm, sparseCCJ, is presented in detail. Moreover, we provide and compare three generations of CCJ implementations, which continuously improve the space requirements: the original CCJ implementation, our first modified implementation, and our final sparsified implementation. The two latest implementations implement the established HotKnots DP09 energy model. In our experiments, using 244GB of RAM, the original CCJ implementation failed to handle sequences longer than 195 bases; sparseCCJ handles our pseudoknot data set (up to about length 400 bases) in this space limit. All three CCJ implementations are available at https://github.com/HosnaJabbari/CCJ.

Cite as

Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will. Sparsification Enables Predicting Kissing Hairpin Pseudoknot Structures of Long RNAs in Practice. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 12:1-12:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jabbari_et_al:LIPIcs.WABI.2017.12,
  author =	{Jabbari, Hosna and Wark, Ian and Montemagno, Carlo and Will, Sebastian},
  title =	{{Sparsification Enables Predicting Kissing Hairpin Pseudoknot Structures of Long RNAs in Practice}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{12:1--12:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.12},
  URN =		{urn:nbn:de:0030-drops-76408},
  doi =		{10.4230/LIPIcs.WABI.2017.12},
  annote =	{Keywords: RNA, secondary structure prediction, pseudoknots, space efficiency, sparsification}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail