Search Results

Documents authored by Jain, Siddhartha


Document
RANDOM
Consumable Data via Quantum Communication

Authors: Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Classical data can be copied and re-used for computation, with adverse consequences economically and in terms of data privacy. Motivated by this, we formulate problems in one-way communication complexity where Alice holds some data x and Bob holds m inputs y_1, …, y_m. They want to compute m instances of a bipartite relation R(⋅,⋅) on every pair (x, y_1), …, (x, y_m). We call this the asymmetric direct sum question for one-way communication. We give examples where the quantum communication complexity of such problems scales polynomially with m, while the classical communication complexity depends at most logarithmically on m. Thus, for such problems, data behaves like a consumable resource that is effectively destroyed upon use when the owner stores and transmits it as quantum states, but not when transmitted classically. We show an application to a strategic data-selling game, and discuss other potential economic implications.

Cite as

Dar Gilboa, Siddhartha Jain, and Jarrod R. McClean. Consumable Data via Quantum Communication. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 39:1-39:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilboa_et_al:LIPIcs.APPROX/RANDOM.2025.39,
  author =	{Gilboa, Dar and Jain, Siddhartha and McClean, Jarrod R.},
  title =	{{Consumable Data via Quantum Communication}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{39:1--39:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  URN =		{urn:nbn:de:0030-drops-244059},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.39},
  annote =	{Keywords: quantum communication, one-time programs, data markets}
}
Document
RANDOM
Communication Complexity of Collision

Authors: Mika Göös and Siddhartha Jain

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The Collision problem is to decide whether a given list of numbers (x_1,…,x_n) ∈ [n]ⁿ is 1-to-1 or 2-to-1 when promised one of them is the case. We show an n^Ω(1) randomised communication lower bound for the natural two-party version of Collision where Alice holds the first half of the bits of each x_i and Bob holds the second half. As an application, we also show a similar lower bound for a weak bit-pigeonhole search problem, which answers a question of Itsykson and Riazanov (CCC 2021).

Cite as

Mika Göös and Siddhartha Jain. Communication Complexity of Collision. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 19:1-19:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.APPROX/RANDOM.2022.19,
  author =	{G\"{o}\"{o}s, Mika and Jain, Siddhartha},
  title =	{{Communication Complexity of Collision}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{19:1--19:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.19},
  URN =		{urn:nbn:de:0030-drops-171415},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.19},
  annote =	{Keywords: Collision, Communication complexity, Lifting}
}
Document
Further Collapses in TFNP

Authors: Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We show EOPL = PLS ∩ PPAD. Here the class EOPL consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubáček and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse CLS = PLS ∩ PPAD by Fearnley et al. (STOC 2021). We also prove a companion result SOPL = PLS ∩ PPADS, where SOPL is the class associated with the Sink-of-Potential-Line problem.

Cite as

Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and Ran Tao. Further Collapses in TFNP. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goos_et_al:LIPIcs.CCC.2022.33,
  author =	{G\"{o}\"{o}s, Mika and Hollender, Alexandros and Jain, Siddhartha and Maystre, Gilbert and Pires, William and Robere, Robert and Tao, Ran},
  title =	{{Further Collapses in TFNP}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.33},
  URN =		{urn:nbn:de:0030-drops-165954},
  doi =		{10.4230/LIPIcs.CCC.2022.33},
  annote =	{Keywords: TFNP, PPAD, PLS, EOPL}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail