Search Results

Documents authored by Jin, Yujia


Document
The Complexity of Infinite-Horizon General-Sum Stochastic Games

Authors: Yujia Jin, Vidya Muthukumar, and Aaron Sidford

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state.

Cite as

Yujia Jin, Vidya Muthukumar, and Aaron Sidford. The Complexity of Infinite-Horizon General-Sum Stochastic Games. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ITCS.2023.76,
  author =	{Jin, Yujia and Muthukumar, Vidya and Sidford, Aaron},
  title =	{{The Complexity of Infinite-Horizon General-Sum Stochastic Games}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.76},
  URN =		{urn:nbn:de:0030-drops-175791},
  doi =		{10.4230/LIPIcs.ITCS.2023.76},
  annote =	{Keywords: complexity, stochastic games, general-sum games, Nash equilibrium}
}
Document
Track A: Algorithms, Complexity and Games
Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching

Authors: Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Box-simplex games are a family of bilinear minimax objectives which encapsulate graph-structured problems such as maximum flow [Sherman, 2017], optimal transport [Arun Jambulapati et al., 2019], and bipartite matching [Sepehr Assadi et al., 2022]. We develop efficient near-linear time, high-accuracy solvers for regularized variants of these games. Beyond the immediate applications of such solvers for computing Sinkhorn distances, a prominent tool in machine learning, we show that these solvers can be used to obtain improved running times for maintaining a (fractional) ε-approximate maximum matching in a dynamic decremental bipartite graph against an adaptive adversary. We give a generic framework which reduces this dynamic matching problem to solving regularized graph-structured optimization problems to high accuracy. Through our reduction framework, our regularized box-simplex game solver implies a new algorithm for dynamic decremental bipartite matching in total time Õ(m ⋅ ε^{-3}), from an initial graph with m edges and n nodes. We further show how to use recent advances in flow optimization [Chen et al., 2022] to improve our runtime to m^{1 + o(1)} ⋅ ε^{-2}, thereby demonstrating the versatility of our reduction-based approach. These results improve upon the previous best runtime of Õ(m ⋅ ε^{-4}) [Aaron Bernstein et al., 2020] and illustrate the utility of using regularized optimization problem solvers for designing dynamic algorithms.

Cite as

Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 77:1-77:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jambulapati_et_al:LIPIcs.ICALP.2022.77,
  author =	{Jambulapati, Arun and Jin, Yujia and Sidford, Aaron and Tian, Kevin},
  title =	{{Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{77:1--77:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.77},
  URN =		{urn:nbn:de:0030-drops-164181},
  doi =		{10.4230/LIPIcs.ICALP.2022.77},
  annote =	{Keywords: bipartite matching, decremental matching, dynamic algorithms, continuous optimization, box-simplex games, primal-dual method}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail