Search Results

Documents authored by Johnson, Timothy


Document
Taming the Knight’s Tour: Minimizing Turns and Crossings

Authors: Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
We introduce two new metrics of "simplicity" for knight’s tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with 9.5n+O(1) turns and 13n+O(1) crossings on a n× n board, and we show lower bounds of (6-ε)n and 4n-O(1) on the respective problems of minimizing these metrics. Hence, our algorithm achieves approximation ratios of 19/12+o(1) and 13/4+o(1). We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for (1,4)-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.

Cite as

Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda. Taming the Knight’s Tour: Minimizing Turns and Crossings. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.FUN.2021.4,
  author =	{Besa, Juan Jose and Johnson, Timothy and Mamano, Nil and Osegueda, Martha C.},
  title =	{{Taming the Knight’s Tour: Minimizing Turns and Crossings}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.4},
  URN =		{urn:nbn:de:0030-drops-127654},
  doi =		{10.4230/LIPIcs.FUN.2021.4},
  annote =	{Keywords: Graph Drawing, Chess, Hamiltonian Cycle, Approximation Algorithms}
}
Document
Optimally Sorting Evolving Data

Authors: Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We give optimal sorting algorithms in the evolving data framework, where an algorithm's input data is changing while the algorithm is executing. In this framework, instead of producing a final output, an algorithm attempts to maintain an output close to the correct output for the current state of the data, repeatedly updating its best estimate of a correct output over time. We show that a simple repeated insertion-sort algorithm can maintain an O(n) Kendall tau distance, with high probability, between a maintained list and an underlying total order of n items in an evolving data model where each comparison is followed by a swap between a random consecutive pair of items in the underlying total order. This result is asymptotically optimal, since there is an Omega(n) lower bound for Kendall tau distance for this problem. Our result closes the gap between this lower bound and the previous best algorithm for this problem, which maintains a Kendall tau distance of O(n log log n) with high probability. It also confirms previous experimental results that suggested that insertion sort tends to perform better than quicksort in practice.

Cite as

Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson. Optimally Sorting Evolving Data. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 81:1-81:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ICALP.2018.81,
  author =	{Besa, Juan Jose and Devanny, William E. and Eppstein, David and Goodrich, Michael T. and Johnson, Timothy},
  title =	{{Optimally Sorting Evolving Data}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{81:1--81:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.81},
  URN =		{urn:nbn:de:0030-drops-90858},
  doi =		{10.4230/LIPIcs.ICALP.2018.81},
  annote =	{Keywords: Sorting, Evolving data, Insertion sort}
}
Document
Square-Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs

Authors: Giordano Da Lozzo, William E. Devanny, David Eppstein, and Timothy Johnson

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
A square-contact representation of a planar graph G = (V,E) maps vertices in V to interior-disjoint axis-aligned squares in the plane and edges in E to adjacencies between the sides of the corresponding squares. In this paper, we study proper square-contact representations of planar graphs, in which any two squares are either disjoint or share infinitely many points. We characterize the partial 2-trees and the triconnected cycle-trees allowing for such representations. For partial 2-trees our characterization uses a simple forbidden subgraph whose structure forces a separating triangle in any embedding. For the triconnected cycle-trees, a subclass of the triconnected simply-nested graphs, we use a new structural decomposition for the graphs in this family, which may be of independent interest. Finally, we study square-contact representations of general triconnected simply-nested graphs with respect to their outerplanarity index.

Cite as

Giordano Da Lozzo, William E. Devanny, David Eppstein, and Timothy Johnson. Square-Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dalozzo_et_al:LIPIcs.ISAAC.2017.24,
  author =	{Da Lozzo, Giordano and Devanny, William E. and Eppstein, David and Johnson, Timothy},
  title =	{{Square-Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.24},
  URN =		{urn:nbn:de:0030-drops-82675},
  doi =		{10.4230/LIPIcs.ISAAC.2017.24},
  annote =	{Keywords: Square-Contact Representations, Partial 2-Trees, Simply-Nested Graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail