Search Results

Documents authored by Kalai, Adam Tauman


Document
Loss Minimization Yields Multicalibration for Large Neural Networks

Authors: Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Adam Tauman Kalai, and Preetum Nakkiran

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Multicalibration is a notion of fairness for predictors that requires them to provide calibrated predictions across a large set of protected groups. Multicalibration is known to be a distinct goal than loss minimization, even for simple predictors such as linear functions. In this work, we consider the setting where the protected groups can be represented by neural networks of size k, and the predictors are neural networks of size n > k. We show that minimizing the squared loss over all neural nets of size n implies multicalibration for all but a bounded number of unlucky values of n. We also give evidence that our bound on the number of unlucky values is tight, given our proof technique. Previously, results of the flavor that loss minimization yields multicalibration were known only for predictors that were near the ground truth, hence were rather limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize the representation of the predictor.

Cite as

Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Adam Tauman Kalai, and Preetum Nakkiran. Loss Minimization Yields Multicalibration for Large Neural Networks. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.ITCS.2024.17,
  author =	{B{\l}asiok, Jaros{\l}aw and Gopalan, Parikshit and Hu, Lunjia and Kalai, Adam Tauman and Nakkiran, Preetum},
  title =	{{Loss Minimization Yields Multicalibration for Large Neural Networks}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.17},
  URN =		{urn:nbn:de:0030-drops-195452},
  doi =		{10.4230/LIPIcs.ITCS.2024.17},
  annote =	{Keywords: Multi-group fairness, loss minimization, neural networks}
}
Document
Omnipredictors

Authors: Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Loss minimization is a dominant paradigm in machine learning, where a predictor is trained to minimize some loss function that depends on an uncertain event (e.g., "will it rain tomorrow?"). Different loss functions imply different learning algorithms and, at times, very different predictors. While widespread and appealing, a clear drawback of this approach is that the loss function may not be known at the time of learning, requiring the algorithm to use a best-guess loss function. Alternatively, the same classifier may be used to inform multiple decisions, which correspond to multiple loss functions, requiring multiple learning algorithms to be run on the same data. We suggest a rigorous new paradigm for loss minimization in machine learning where the loss function can be ignored at the time of learning and only be taken into account when deciding an action. We introduce the notion of an (L,𝒞)-omnipredictor, which could be used to optimize any loss in a family L. Once the loss function is set, the outputs of the predictor can be post-processed (a simple univariate data-independent transformation of individual predictions) to do well compared with any hypothesis from the class C. The post processing is essentially what one would perform if the outputs of the predictor were true probabilities of the uncertain events. In a sense, omnipredictors extract all the predictive power from the class 𝒞, irrespective of the loss function in L. We show that such "loss-oblivious" learning is feasible through a connection to multicalibration, a notion introduced in the context of algorithmic fairness. A multicalibrated predictor doesn’t aim to minimize some loss function, but rather to make calibrated predictions, even when conditioned on inputs lying in certain sets c belonging to a family 𝒞 which is weakly learnable. We show that a 𝒞-multicalibrated predictor is also an (L,𝒞)-omnipredictor, where L contains all convex loss functions with some mild Lipschitz conditions. The predictors are even omnipredictors with respect to sparse linear combinations of functions in 𝒞. As a corollary, we deduce that distribution-specific weak agnostic learning is complete for a large class of loss minimization tasks. In addition, we show how multicalibration can be viewed as a solution concept for agnostic boosting, shedding new light on past results. Finally, we transfer our insights back to the context of algorithmic fairness by providing omnipredictors for multi-group loss minimization.

Cite as

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder. Omnipredictors. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 79:1-79:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2022.79,
  author =	{Gopalan, Parikshit and Kalai, Adam Tauman and Reingold, Omer and Sharan, Vatsal and Wieder, Udi},
  title =	{{Omnipredictors}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{79:1--79:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.79},
  URN =		{urn:nbn:de:0030-drops-156755},
  doi =		{10.4230/LIPIcs.ITCS.2022.79},
  annote =	{Keywords: Loss-minimzation, multi-group fairness, agnostic learning, boosting}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail