Search Results

Documents authored by Kaplan, Marc


Document
Provably Secure Key Establishment Against Quantum Adversaries

Authors: Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis Salvail

Published in: LIPIcs, Volume 73, 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)


Abstract
At Crypto 2011, some of us had proposed a family of cryptographic protocols for key establishment capable of protecting quantum and classical legitimate parties unconditionally against a quantum eavesdropper in the query complexity model. Unfortunately, our security proofs were unsatisfactory from a cryptographically meaningful perspective because they were sound only in a worst-case scenario. Here, we extend our results and prove that for any \eps > 0, there is a classical protocol that allows the legitimate parties to establish a common key after O(N) expected queries to a random oracle, yet any quantum eavesdropper will have a vanishing probability of learning their key after O(N^(1.5-\eps)) queries to the same oracle. The vanishing probability applies to a typical run of the protocol. If we allow the legitimate parties to use a quantum computer as well, their advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed over classical eavesdroppers in the seminal 1974 work of Ralph Merkle. Along the way, we develop new tools to give lower bounds on the number of quantum queries required to distinguish two probability distributions. This method in itself could have multiple applications in cryptography. We use it here to study average-case quantum query complexity, for which we develop a new composition theorem of independent interest.

Cite as

Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis Salvail. Provably Secure Key Establishment Against Quantum Adversaries. In 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 73, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{belovs_et_al:LIPIcs.TQC.2017.3,
  author =	{Belovs, Aleksandrs and Brassard, Gilles and H{\o}yer, Peter and Kaplan, Marc and Laplante, Sophie and Salvail, Louis},
  title =	{{Provably Secure Key Establishment Against Quantum Adversaries}},
  booktitle =	{12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-034-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{73},
  editor =	{Wilde, Mark M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2017.3},
  URN =		{urn:nbn:de:0030-drops-85816},
  doi =		{10.4230/LIPIcs.TQC.2017.3},
  annote =	{Keywords: Merkle puzzles, Key establishment schemes, Quantum cryptography, Adversary method, Average-case analysis}
}
Document
Non-Local Box Complexity and Secure Function Evaluation

Authors: Marc Kaplan, Iordanis Kerenidis, Sophie Laplante, and Jérémie Roland

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
A non-local box is an abstract device into which Alice and Bob input bits $x$ and $y$ respectively and receive outputs $a$ and $b$ respectively, where $a,b$ are uniformly distributed and $a \oplus b = x \wedge y$. Such boxes have been central to the study of quantum or generalized non-locality as well as the simulation of non-signaling distributions. In this paper, we start by studying how many non-local boxes Alice and Bob need in order to compute a Boolean function $f$. We provide tight upper and lower bounds in terms of the communication complexity of the function both in the deterministic and randomized case. We show that non-local box complexity has interesting applications to classical cryptography, in particular to secure function evaluation, and study the question posed by Beimel and Malkin \cite{BM} of how many Oblivious Transfer calls Alice and Bob need in order to securely compute a function $f$. We show that this question is related to the non-local box complexity of the function and conclude by greatly improving their bounds. Finally, another consequence of our results is that traceless two-outcome measurements on maximally entangled states can be simulated with 3 \nlbs, while no finite bound was previously known.

Cite as

Marc Kaplan, Iordanis Kerenidis, Sophie Laplante, and Jérémie Roland. Non-Local Box Complexity and Secure Function Evaluation. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 239-250, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.FSTTCS.2009.2322,
  author =	{Kaplan, Marc and Kerenidis, Iordanis and Laplante, Sophie and Roland, J\'{e}r\'{e}mie},
  title =	{{Non-Local Box Complexity and Secure Function Evaluation}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{239--250},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2322},
  URN =		{urn:nbn:de:0030-drops-23226},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2322},
  annote =	{Keywords: Communication complexity, non-locality, non-local boxes, secure function evaluation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail