Search Results

Documents authored by Kar, Debajyoti


Document
Track A: Algorithms, Complexity and Games
Improved Approximation Algorithms for Three-Dimensional Bin Packing

Authors: Debajyoti Kar, Arindam Khan, and Malin Rau

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study three fundamental three-dimensional (3D) geometric packing problems: 3D (Geometric) Bin Packing (3D-BP), 3D Strip Packing (3D-SP), and Minimum Volume Bounding Box (3D-MVBB), where given a set of 3D (rectangular) cuboids, the goal is to find an axis-aligned nonoverlapping packing of all cuboids. In 3D-BP, we need to pack the given cuboids into the minimum number of unit cube bins. In 3D-SP, we need to pack them into a 3D cuboid with a unit square base and minimum height. Finally, in 3D-MVBB, the goal is to pack into a cuboid box of minimum volume. It is NP-hard to even decide whether a set of rectangles can be packed into a unit square bin - giving an (absolute) approximation hardness of 2 for 3D-BP and 3D-SP. The previous best (absolute) approximation for all three problems is by Li and Cheng (SICOMP, 1990), who gave algorithms with approximation ratios of 13, 46/7, and 46/7+ε, respectively, for 3D-BP, 3D-SP, and 3D-MVBB. We provide improved approximation ratios of 6, 6, and 3+ε, respectively, for the three problems, for any constant ε > 0. For 3D-BP, in the asymptotic regime, Bansal, Correa, Kenyon, and Sviridenko (Math. Oper. Res., 2006) showed that there is no asymptotic polynomial-time approximation scheme (APTAS) even when all items have the same height. Caprara (Math. Oper. Res., 2008) gave an asymptotic approximation ratio of T_{∞}² + ε ≈ 2.86, where T_{∞} is the well-known Harmonic constant in Bin Packing. We provide an algorithm with an improved asymptotic approximation ratio of 3 T_{∞}/2 + ε ≈ 2.54. Further, we show that unlike 3D-BP (and 3D-SP), 3D-MVBB admits an APTAS.

Cite as

Debajyoti Kar, Arindam Khan, and Malin Rau. Improved Approximation Algorithms for Three-Dimensional Bin Packing. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 104:1-104:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kar_et_al:LIPIcs.ICALP.2025.104,
  author =	{Kar, Debajyoti and Khan, Arindam and Rau, Malin},
  title =	{{Improved Approximation Algorithms for Three-Dimensional Bin Packing}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{104:1--104:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.104},
  URN =		{urn:nbn:de:0030-drops-234814},
  doi =		{10.4230/LIPIcs.ICALP.2025.104},
  annote =	{Keywords: Approximation Algorithms, Geometric Packing, Multidimensional Packing}
}
Document
Improved Approximation Algorithms for Three-Dimensional Knapsack

Authors: Klaus Jansen, Debajyoti Kar, Arindam Khan, K. V. N. Sreenivas, and Malte Tutas

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We study the three-dimensional Knapsack (3DK) problem, in which we are given a set of axis-aligned cuboids with associated profits and an axis-aligned cube knapsack. The objective is to find a non-overlapping axis-aligned packing (by translation) of the maximum profit subset of cuboids into the cube. The previous best approximation algorithm is due to Diedrich, Harren, Jansen, Thöle, and Thomas (2008), who gave a (7+ε)-approximation algorithm for 3DK and a (5+ε)-approximation algorithm for the variant when the items can be rotated by 90 degrees around any axis, for any constant ε > 0. Chlebík and Chlebíková (2009) showed that the problem does not admit an asymptotic polynomial-time approximation scheme. We provide an improved polynomial-time (139/29+ε) ≈ 4.794-approximation algorithm for 3DK and (30/7+ε) ≈ 4.286-approximation when rotations by 90 degrees are allowed. We also provide improved approximation algorithms for several variants such as the cardinality case (when all items have the same profit) and uniform profit-density case (when the profit of an item is equal to its volume). Our key technical contribution is container packing - a structured packing in 3D such that all items are assigned into a constant number of containers, and each container is packed using a specific strategy based on its type. We first show the existence of highly profitable container packings. Thereafter, we show that one can find near-optimal container packing efficiently using a variant of the Generalized Assignment Problem (GAP).

Cite as

Klaus Jansen, Debajyoti Kar, Arindam Khan, K. V. N. Sreenivas, and Malte Tutas. Improved Approximation Algorithms for Three-Dimensional Knapsack. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 60:1-60:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.SoCG.2025.60,
  author =	{Jansen, Klaus and Kar, Debajyoti and Khan, Arindam and Sreenivas, K. V. N. and Tutas, Malte},
  title =	{{Improved Approximation Algorithms for Three-Dimensional Knapsack}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{60:1--60:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.60},
  URN =		{urn:nbn:de:0030-drops-232126},
  doi =		{10.4230/LIPIcs.SoCG.2025.60},
  annote =	{Keywords: Approximation Algorithms, Hyperrectangle Packing, Multidimensional Knapsack, Three-dimensional Packing}
}
Document
Random-Order Online Independent Set of Intervals and Hyperrectangles

Authors: Mohit Garg, Debajyoti Kar, and Arindam Khan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of n (possibly overlapping) d-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For d = 1, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for d-dimensional hyperrectangles, polynomial time (log n)^{O(d)}-approximation algorithms are known [Chalermsook and Chuzhoy, 2009]. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an Ω(n) lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis (see the survey by Gupta and Singla [Anupam Gupta and Sahil Singla, 2020]). Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple (log n)^{O(d)}-competitive algorithm for d-dimensional hyperrectangles in this model, which runs in O_d̃(n) time. Our approach also yields (log n)^{O(d)}-competitive algorithms in the random-order model for more general objects such as d-dimensional fat objects and ellipsoids. Furthermore, all our competitiveness guarantees hold with high probability, and not just in expectation.

Cite as

Mohit Garg, Debajyoti Kar, and Arindam Khan. Random-Order Online Independent Set of Intervals and Hyperrectangles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 58:1-58:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ESA.2024.58,
  author =	{Garg, Mohit and Kar, Debajyoti and Khan, Arindam},
  title =	{{Random-Order Online Independent Set of Intervals and Hyperrectangles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{58:1--58:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.58},
  URN =		{urn:nbn:de:0030-drops-211298},
  doi =		{10.4230/LIPIcs.ESA.2024.58},
  annote =	{Keywords: Online Algorithms, Random-Order Model, Maximum Independent Set of Rectangles, Hyperrectangles, Fat Objects, Interval Scheduling}
}
Document
Approximation Algorithms for Round-UFP and Round-SAP

Authors: Debajyoti Kar, Arindam Khan, and Andreas Wiese

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study Round-UFP and Round-SAP, two generalizations of the classical Bin Packing problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of jobs where for each job we are given a demand and a subpath. In Round-UFP, the goal is to find a packing of all jobs into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of jobs on any edge does not exceed the capacity of the respective edge. In Round-SAP, the jobs are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to Bin Packing, both problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic (2+ε)-approximations for both problems. For the general case, we obtain an O(log log n)-approximation algorithm and an O(log log 1/δ)-approximation under (1+δ)-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum job demand is at most the minimum edge capacity), we obtain an absolute 12- and an asymptotic (16+ε)-approximation algorithm for Round-UFP and Round-SAP, respectively.

Cite as

Debajyoti Kar, Arindam Khan, and Andreas Wiese. Approximation Algorithms for Round-UFP and Round-SAP. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kar_et_al:LIPIcs.ESA.2022.71,
  author =	{Kar, Debajyoti and Khan, Arindam and Wiese, Andreas},
  title =	{{Approximation Algorithms for Round-UFP and Round-SAP}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.71},
  URN =		{urn:nbn:de:0030-drops-170098},
  doi =		{10.4230/LIPIcs.ESA.2022.71},
  annote =	{Keywords: Approximation Algorithms, Scheduling, Rectangle Packing}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail