Search Results

Documents authored by Ke, Yiduo


Document
APPROX
Scalable Auction Algorithms for Bipartite Maximum Matching Problems

Authors: Quanquan C. Liu, Yiduo Ke, and Samir Khuller

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Bipartite maximum matching and its variants are well-studied problems under various models of computation with the vast majority of approaches centering around various methods to find and eliminate augmenting paths. Beginning with the seminal papers of Demange, Gale and Sotomayor [DGS86] and Bertsekas [Ber81], bipartite maximum matching problems have also been studied in the context of auction algorithms. These algorithms model the maximum matching problem as an auction where one side of the bipartite graph consists of bidders and the other side consists of items; as such, these algorithms offer a very different approach to solving this problem that do not use classical methods. Dobzinski, Nisan and Oren [DNO14] demonstrated the utility of such algorithms in distributed, interactive settings by providing a simple and elegant O(log n/ε²) round maximum cardinality bipartite matching (MCM) algorithm that has small round and communication complexity and gives a (1-ε)-approximation for any (not necessarily constant) ε > 0. They leave as an open problem whether an auction algorithm, with similar guarantees, can be found for the maximum weighted bipartite matching (MWM) problem. Very recently, Assadi, Liu, and Tarjan [ALT21] extended the utility of auction algorithms for MCM into the semi-streaming and massively parallel computation (MPC) models, by cleverly using maximal matching as a subroutine, to give a new auction algorithm that uses O(1/ε²) rounds and achieves the state-of-the-art bipartite MCM results in the streaming and MPC settings. In this paper, we give new auction algorithms for maximum weighted bipartite matching (MWM) and maximum cardinality bipartite b-matching (MCbM). Our algorithms run in O(log n/ε⁸) and O(log n/ε²) rounds, respectively, in the distributed setting. We show that our MWM algorithm can be implemented in the distributed, interactive setting using O(log² n) and O(log n) bit messages, respectively, directly answering the open question posed by Demange, Gale and Sotomayor [DNO14]. Furthermore, we implement our algorithms in a variety of other models including the the semi-streaming model, the shared-memory work-depth model, and the massively parallel computation model. Our semi-streaming MWM algorithm uses O(1/ε⁸) passes in O(n log n ⋅ log(1/ε)) space and our MCbM algorithm runs in O(1/ε²) passes using O((∑_{i ∈ L} b_i + |R|) log(1/ε)) space (where parameters b_i represent the degree constraints on the b-matching and L and R represent the left and right side of the bipartite graph, respectively). Both of these algorithms improves exponentially the dependence on ε in the space complexity in the semi-streaming model against the best-known algorithms for these problems, in addition to improvements in round complexity for MCbM. Finally, our algorithms eliminate the large polylogarithmic dependence on n in depth and number of rounds in the work-depth and massively parallel computation models, respectively, improving on previous results which have large polylogarithmic dependence on n (and exponential dependence on ε in the MPC model).

Cite as

Quanquan C. Liu, Yiduo Ke, and Samir Khuller. Scalable Auction Algorithms for Bipartite Maximum Matching Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.APPROX/RANDOM.2023.28,
  author =	{Liu, Quanquan C. and Ke, Yiduo and Khuller, Samir},
  title =	{{Scalable Auction Algorithms for Bipartite Maximum Matching Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.28},
  URN =		{urn:nbn:de:0030-drops-188537},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.28},
  annote =	{Keywords: auction algorithms, maximum weight bipartite matching, maximum b-matching, distributed blackboard model, parallel work-depth model, streaming model, massively parallel computation model}
}
Document
An Algorithmic Approach to Address Course Enrollment Challenges

Authors: Arpita Biswas, Yiduo Ke, Samir Khuller, and Quanquan C. Liu

Published in: LIPIcs, Volume 256, 4th Symposium on Foundations of Responsible Computing (FORC 2023)


Abstract
Massive surges of enrollments in courses have led to a crisis in several computer science departments - not only is the demand for certain courses extremely high from majors, but the demand from non-majors is also very high. Much of the time, this leads to significant frustration on the part of the students, and getting seats in desired courses is a rather ad-hoc process. One approach is to first collect information from students about which courses they want to take and to develop optimization models for assigning students to available seats in a fair manner. What makes this problem complex is that the courses themselves have time conflicts, and the students have credit caps (an upper bound on the number of courses they would like to enroll in). We model this problem as follows. We have n agents (students), and there are "resources" (these correspond to courses). Each agent is only interested in a subset of the resources (courses of interest), and each resource can only be assigned to a bounded number of agents (available seats). In addition, each resource corresponds to an interval of time, and the objective is to assign non-overlapping resources to agents so as to produce "fair and high utility" schedules. In this model, we provide a number of results under various settings and objective functions. Specifically, in this paper, we consider the following objective functions: total utility, max-min (Santa Claus objective), and envy-freeness. The total utility objective function maximizes the sum of the utilities of all courses assigned to students. The max-min objective maximizes the minimum utility obtained by any student. Finally, envy-freeness ensures that no student envies another student’s allocation. Under these settings and objective functions, we show a number of theoretical results. Specifically, we show that the course allocation under the time conflicts problem is NP-complete but becomes polynomial-time solvable when given only a constant number of students or all credits, course lengths, and utilities are uniform. Furthermore, we give a near-linear time algorithm for obtaining a constant 1/2-factor approximation for the general maximizing total utility problem when utility functions are binary. In addition, we show that there exists a near-linear time algorithm that obtains a 1/2-factor approximation on total utility and a 1/4-factor approximation on max-min utility when given uniform credit caps and uniform utilities. For the setting of binary valuations, we show three polynomial time algorithms for 1/2-factor approximation of total utility, envy-freeness up to one item, and a constant factor approximation of the max-min utility value when course lengths are within a constant factor of each other. Finally, we conclude with experimental results that demonstrate that our algorithms yield high-quality results in real-world settings.

Cite as

Arpita Biswas, Yiduo Ke, Samir Khuller, and Quanquan C. Liu. An Algorithmic Approach to Address Course Enrollment Challenges. In 4th Symposium on Foundations of Responsible Computing (FORC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 256, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.FORC.2023.8,
  author =	{Biswas, Arpita and Ke, Yiduo and Khuller, Samir and Liu, Quanquan C.},
  title =	{{An Algorithmic Approach to Address Course Enrollment Challenges}},
  booktitle =	{4th Symposium on Foundations of Responsible Computing (FORC 2023)},
  pages =	{8:1--8:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-272-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{256},
  editor =	{Talwar, Kunal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2023.8},
  URN =		{urn:nbn:de:0030-drops-179297},
  doi =		{10.4230/LIPIcs.FORC.2023.8},
  annote =	{Keywords: fairness, allocation, matching, algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail