Search Results

Documents authored by Kenig, Batya


Document
Enumeration of Minimal Hitting Sets Parameterized by Treewidth

Authors: Batya Kenig and Dan Shlomo Mizrahi

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Enumerating the minimal hitting sets of a hypergraph is a problem which arises in many data management applications that include constraint mining, discovering unique column combinations, and enumerating database repairs. Previously, Eiter et al. [Thomas Eiter et al., 2003] showed that the minimal hitting sets of an n-vertex hypergraph, with treewidth w, can be enumerated with delay O^*(n^w) (ignoring polynomial factors), with space requirements that scale with the output size. We improve this to fixed-parameter-linear delay, following an FPT preprocessing phase. The memory consumption of our algorithm is exponential with respect to the treewidth of the hypergraph.

Cite as

Batya Kenig and Dan Shlomo Mizrahi. Enumeration of Minimal Hitting Sets Parameterized by Treewidth. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kenig_et_al:LIPIcs.ICDT.2025.8,
  author =	{Kenig, Batya and Mizrahi, Dan Shlomo},
  title =	{{Enumeration of Minimal Hitting Sets Parameterized by Treewidth}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.8},
  URN =		{urn:nbn:de:0030-drops-229498},
  doi =		{10.4230/LIPIcs.ICDT.2025.8},
  annote =	{Keywords: Enumeration, Hitting sets}
}
Document
Integrity Constraints Revisited: From Exact to Approximate Implication

Authors: Batya Kenig and Dan Suciu

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
Integrity constraints such as functional dependencies (FD), and multi-valued dependencies (MVD) are fundamental in database schema design. Likewise, probabilistic conditional independences (CI) are crucial for reasoning about multivariate probability distributions. The implication problem studies whether a set of constraints (antecedents) implies another constraint (consequent), and has been investigated in both the database and the AI literature, under the assumption that all constraints hold exactly. However, many applications today consider constraints that hold only approximately. In this paper we define an approximate implication as a linear inequality between the degree of satisfaction of the antecedents and consequent, and we study the relaxation problem: when does an exact implication relax to an approximate implication? We use information theory to define the degree of satisfaction, and prove several results. First, we show that any implication from a set of data dependencies (MVDs+FDs) can be relaxed to a simple linear inequality with a factor at most quadratic in the number of variables; when the consequent is an FD, the factor can be reduced to 1. Second, we prove that there exists an implication between CIs that does not admit any relaxation; however, we prove that every implication between CIs relaxes "in the limit". Finally, we show that the implication problem for differential constraints in market basket analysis also admits a relaxation with a factor equal to 1. Our results recover, and sometimes extend, several previously known results about the implication problem: implication of MVDs can be checked by considering only 2-tuple relations, and the implication of differential constraints for frequent item sets can be checked by considering only databases containing a single transaction.

Cite as

Batya Kenig and Dan Suciu. Integrity Constraints Revisited: From Exact to Approximate Implication. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kenig_et_al:LIPIcs.ICDT.2020.18,
  author =	{Kenig, Batya and Suciu, Dan},
  title =	{{Integrity Constraints Revisited: From Exact to Approximate Implication}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.18},
  URN =		{urn:nbn:de:0030-drops-119420},
  doi =		{10.4230/LIPIcs.ICDT.2020.18},
  annote =	{Keywords: Integrity constraints, The implication problem}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail