Search Results

Documents authored by Kollias, Kostas


Document
Online Learning and Bandits with Queried Hints

Authors: Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas Kollias, and Kamesh Munagala

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number (k) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with k = 2 suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from O(√{nT}) to O(n² log T), where n is the number of arms and T is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, k = 3 probes suffice to achieve parameter-independent constant regret, O(n²). Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited "advice" via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.

Cite as

Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas Kollias, and Kamesh Munagala. Online Learning and Bandits with Queried Hints. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ITCS.2023.16,
  author =	{Bhaskara, Aditya and Gollapudi, Sreenivas and Im, Sungjin and Kollias, Kostas and Munagala, Kamesh},
  title =	{{Online Learning and Bandits with Queried Hints}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.16},
  URN =		{urn:nbn:de:0030-drops-175197},
  doi =		{10.4230/LIPIcs.ITCS.2023.16},
  annote =	{Keywords: Online learning, multi-armed bandits, regret}
}
Document
APPROX
Revenue Maximization in Transportation Networks

Authors: Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We study the joint optimization problem of pricing trips in a transportation network and serving the induced demands by routing a fleet of available service vehicles to maximize revenue. Our framework encompasses applications that include traditional transportation networks (e.g., airplanes, buses) and their more modern counterparts (e.g., ride-sharing systems). We describe a simple combinatorial model, in which each edge in the network is endowed with a curve that gives the demand for traveling between its endpoints at any given price. We are supplied with a number of vehicles and a time budget to serve the demands induced by the prices that we set, seeking to maximize revenue. We first focus on a (preliminary) special case of our model with unit distances and unit time horizon. We show that this version of the problem can be solved optimally in polynomial time. Switching to the general case of our model, we first present a two-stage approach that separately optimizes for prices and routes, achieving a logarithmic approximation to revenue in the process. Next, using the insights gathered in the first two results, we present a constant factor approximation algorithm that jointly optimizes for prices and routes for the supply vehicles. Finally, we discuss how our algorithms can handle capacitated vehicles, impatient demands, and selfish (wage-maximizing) drivers.

Cite as

Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit. Revenue Maximization in Transportation Networks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhawalkar_et_al:LIPIcs.APPROX/RANDOM.2021.26,
  author =	{Bhawalkar, Kshipra and Kollias, Kostas and Purohit, Manish},
  title =	{{Revenue Maximization in Transportation Networks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.26},
  URN =		{urn:nbn:de:0030-drops-147197},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.26},
  annote =	{Keywords: Pricing, networks, approximation algorithms}
}
Document
Profit Sharing and Efficiency in Utility Games

Authors: Sreenivas Gollapudi, Kostas Kollias, Debmalya Panigrahi, and Venetia Pliatsika

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We study utility games (Vetta, FOCS 2002) where a set of players join teams to produce social utility, and receive individual utility in the form of payments in return. These games have many natural applications in competitive settings such as labor markets, crowdsourcing, etc. The efficiency of such a game depends on the profit sharing mechanism - the rule that maps utility produced by the players to their individual payments. We study three natural and widely used profit sharing mechanisms - egalitarian or equal sharing, marginal gain or value addition when a player joins, and marginal loss or value depletion when a player leaves. For these settings, we give tight bounds on the price of anarchy, thereby allowing comparison between these popular mechanisms from a (worst case) social welfare perspective.

Cite as

Sreenivas Gollapudi, Kostas Kollias, Debmalya Panigrahi, and Venetia Pliatsika. Profit Sharing and Efficiency in Utility Games. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 43:1-43:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gollapudi_et_al:LIPIcs.ESA.2017.43,
  author =	{Gollapudi, Sreenivas and Kollias, Kostas and Panigrahi, Debmalya and Pliatsika, Venetia},
  title =	{{Profit Sharing and Efficiency in Utility Games}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{43:1--43:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.43},
  URN =		{urn:nbn:de:0030-drops-78329},
  doi =		{10.4230/LIPIcs.ESA.2017.43},
  annote =	{Keywords: Price of anarchy, submodular maximization, coverage functions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail