Search Results

Documents authored by Koopmann, Patrick


Document
Invited Paper
Explaining Reasoning Results for Description Logic Ontologies (Invited Paper)

Authors: Patrick Koopmann

Published in: OASIcs, Volume 138, Joint Proceedings of the 20th and 21st Reasoning Web Summer Schools (RW 2024 & RW 2025)


Abstract
The Web Ontology Language (OWL), grounded in description logics, enables reasoning systems to infer implicit knowledge in a transparent manner. However, the expressivity of description logics and the complexity of large ontologies often results in reasoning outcomes that are hard to understand without additional tool support. Explanations of these outcomes are essential for users to understand ontology content, communicate its structure and behavior effectively, and debug undesired or missing inferences. This chapter provides an overview of the central explanation techniques that have been developed for explaining reasoning with description logic ontologies. Here, we consider both explanations for positive entailments (explaining why something can be deduced), as well as negative entailments (why something cannot be deduced). More specifically, we discuss justifications, proofs and interpolation as a means to explain positive entailments, and abduction for explaining negative entailments, where we also have a closer look at practical algorithms as well as practical and theoretical challenges.

Cite as

Patrick Koopmann. Explaining Reasoning Results for Description Logic Ontologies (Invited Paper). In Joint Proceedings of the 20th and 21st Reasoning Web Summer Schools (RW 2024 & RW 2025). Open Access Series in Informatics (OASIcs), Volume 138, pp. 6:1-6:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{koopmann:OASIcs.RW.2024/2025.6,
  author =	{Koopmann, Patrick},
  title =	{{Explaining Reasoning Results for Description Logic Ontologies}},
  booktitle =	{Joint Proceedings of the 20th and 21st Reasoning Web Summer Schools (RW 2024 \& RW 2025)},
  pages =	{6:1--6:29},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-405-5},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{138},
  editor =	{Artale, Alessandro and Bienvenu, Meghyn and Garc{\'\i}a, Yazm{\'\i}n Ib\'{a}\~{n}ez and Murlak, Filip},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.RW.2024/2025.6},
  URN =		{urn:nbn:de:0030-drops-250514},
  doi =		{10.4230/OASIcs.RW.2024/2025.6},
  annote =	{Keywords: Explanations, Justifications, Proofs, Craig Interpolation, Contrastive Explanations}
}
Document
Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge

Authors: Kai Obendrauf, Anne Baanen, Patrick Koopmann, and Vera Stebletsova

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Coalition Logic (CL) is a well-known formalism for reasoning about the strategic abilities of groups of agents in multi-agent systems. Coalition Logic with Common Knowledge (CLC) extends CL with operators from epistic logics, and thus with the ability to model the individual and common knowledge of agents. We have formalized the syntax and semantics of both logics in the interactive theorem prover Lean 4, and used it to prove soundness and completeness of its axiomatization. Our formalization uses the type class system to generalize over different aspects of CLC, thus allowing us to reuse some of to prove properties in related logics such as CL and CLK (CL with individual knowledge).

Cite as

Kai Obendrauf, Anne Baanen, Patrick Koopmann, and Vera Stebletsova. Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{obendrauf_et_al:LIPIcs.ITP.2024.28,
  author =	{Obendrauf, Kai and Baanen, Anne and Koopmann, Patrick and Stebletsova, Vera},
  title =	{{Lean Formalization of Completeness Proof for Coalition Logic with Common Knowledge}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.28},
  URN =		{urn:nbn:de:0030-drops-207560},
  doi =		{10.4230/LIPIcs.ITP.2024.28},
  annote =	{Keywords: Multi-agent systems, Coalition Logic, Epistemic Logic, common knowledge, completeness, formal methods, Lean prover}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail