Search Results

Documents authored by Koutsouridis, Aristotelis


Document
Automating Memory Model Metatheory with Intersections

Authors: Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
In the weak memory consistency literature, the semantics of concurrent programs is typically defined as a constraint on execution graphs, expressed in relational algebra. Prior work has shown that basic metatheoretic questions about memory models are decidable as long as they can be expressed as irreflexivity and emptiness constraints over Kleene Algebra with Tests (KAT), a condition that rules out practical memory models such the C/C++ and the Linux kernel models. In this paper, we extend these results to memory models containing arbitrary intersections with uninterpreted relations. We can thus automatically establish compilation correctness and derive efficient incremental consistency checkers for RC11, LKMM, and other memory models.

Cite as

Aristotelis Koutsouridis, Michalis Kokologiannakis, and Viktor Vafeiadis. Automating Memory Model Metatheory with Intersections. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{koutsouridis_et_al:LIPIcs.CONCUR.2024.33,
  author =	{Koutsouridis, Aristotelis and Kokologiannakis, Michalis and Vafeiadis, Viktor},
  title =	{{Automating Memory Model Metatheory with Intersections}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.33},
  URN =		{urn:nbn:de:0030-drops-208050},
  doi =		{10.4230/LIPIcs.CONCUR.2024.33},
  annote =	{Keywords: Kleene Algebra, Weak Memory Models}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail