Search Results

Documents authored by Lagniez, Jean-Marie


Document
Dynamic Blocked Clause Elimination for Projected Model Counting

Authors: Jean-Marie Lagniez, Pierre Marquis, and Armin Biere

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
In this paper, we explore the application of blocked clause elimination for projected model counting. This is the problem of determining the number of models ‖∃ X . Σ‖ of a propositional formula Σ after eliminating a given set X of variables existentially. Although blocked clause elimination is a well-known technique for SAT solving, its direct application to model counting is challenging as in general it changes the number of models. However, we demonstrate, by focusing on projected variables during the blocked clause search, that blocked clause elimination can be leveraged while preserving the correct model count. To take advantage of blocked clause elimination in an efficient way during model counting, a novel data structure and associated algorithms are introduced. Our proposed approach is implemented in the model counter d4. Our experiments demonstrate the computational benefits of our new method of blocked clause elimination for projected model counting.

Cite as

Jean-Marie Lagniez, Pierre Marquis, and Armin Biere. Dynamic Blocked Clause Elimination for Projected Model Counting. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 21:1-21:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lagniez_et_al:LIPIcs.SAT.2024.21,
  author =	{Lagniez, Jean-Marie and Marquis, Pierre and Biere, Armin},
  title =	{{Dynamic Blocked Clause Elimination for Projected Model Counting}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{21:1--21:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.21},
  URN =		{urn:nbn:de:0030-drops-205430},
  doi =		{10.4230/LIPIcs.SAT.2024.21},
  annote =	{Keywords: Projected model counting, blocked clause elimination, propositional logic}
}
Document
A New Exact Solver for (Weighted) Max#SAT

Authors: Gilles Audemard, Jean-Marie Lagniez, and Marie Miceli

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
We present and evaluate d4Max, an exact approach for solving the Weighted Max#SAT problem. The Max#SAT problem extends the model counting problem (#SAT) by considering a tripartition of the variables {X, Y, Z}, and consists in maximizing over X the number of assignments to Y that can be extended to a solution with some assignment to Z. The Weighted Max#SAT problem is an extension of the Max#SAT problem with weights associated on each interpretation. We test and compare our approach with other state-of-the-art solvers on the challenging task in probabilistic inference of finding the marginal maximum a posteriori probability (MMAP) of a given subset of the variables in a Bayesian network and on exist-random quantified SSAT benchmarks. The results clearly show the overall superiority of d4Max in term of speed and number of instances solved. Moreover, we experimentally show that, in general, d4Max is able to quickly spot a solution that is close to optimal, thereby opening the door to an efficient anytime approach.

Cite as

Gilles Audemard, Jean-Marie Lagniez, and Marie Miceli. A New Exact Solver for (Weighted) Max#SAT. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{audemard_et_al:LIPIcs.SAT.2022.28,
  author =	{Audemard, Gilles and Lagniez, Jean-Marie and Miceli, Marie},
  title =	{{A New Exact Solver for (Weighted) Max#SAT}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.28},
  URN =		{urn:nbn:de:0030-drops-167022},
  doi =		{10.4230/LIPIcs.SAT.2022.28},
  annote =	{Keywords: Max#SAT, EMaj-SAT, Weighted Projected Model Counting, SSAT}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail