Search Results

Documents authored by Lee, Yi


Document
Qafny: A Quantum-Program Verifier

Authors: Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to verify them formally to ensure that they correctly implement their specifications. Formal verification, however, also traditionally requires significant effort. To address this challenge, we present Qafny, an automated proof system based on the program verifier Dafny and designed for verifying quantum programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations modeled within a classical separation logic framework. We prove the soundness and completeness of our proof system and implement a prototype compiler that transforms Qafny programs and specifications into Dafny for automated verification purposes. We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.

Cite as

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. Qafny: A Quantum-Program Verifier. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 24:1-24:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.24,
  author =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  title =	{{Qafny: A Quantum-Program Verifier}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{24:1--24:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.24},
  URN =		{urn:nbn:de:0030-drops-208735},
  doi =		{10.4230/LIPIcs.ECOOP.2024.24},
  annote =	{Keywords: Quantum Computing, Automated Verification, Separation Logic}
}
Document
Artifact
Qafny: A Quantum-Program Verifier (Artifact)

Authors: Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu

Published in: DARTS, Volume 10, Issue 2, Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
This artifact contains the Coq theory files for the Qafny proof system, including the formalism of the Qafny syntax, semantics, type system, and proof system, with the theorem proofs of type soundness, proof system soundness and completeness. It also contains a the compiled Dafny example programs generated from our Qafny-to-Dafny prototype compiler. These example programs serve as the validations of our Qafny-to-Dafny prototype compiler mechanism. The main work is introduced in the Qafny paper, which develops a separation logic style verification framework for quantum programs.

Cite as

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. Qafny: A Quantum-Program Verifier (Artifact). In Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 2, pp. 12:1-12:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{li_et_al:DARTS.10.2.12,
  author =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  title =	{{Qafny: A Quantum-Program Verifier (Artifact)}},
  pages =	{12:1--12:2},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-342-3},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{2},
  editor =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.12},
  URN =		{urn:nbn:de:0030-drops-209104},
  doi =		{10.4230/DARTS.10.2.12},
  annote =	{Keywords: Quantum Computing, Automated Verification, Separation Logic}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail