Search Results

Documents authored by Li, Jerry Zirui


Document
Track A: Algorithms, Complexity and Games
Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems

Authors: Serge Gaspers and Jerry Zirui Li

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let U be a universe on n elements, let k be a positive integer, and let ℱ be a family of (implicitly defined) subsets of U. We consider the problems of partitioning U into k sets from ℱ, covering U with k sets from ℱ, and packing k non-intersecting sets from ℱ into U. Classically, these problems can be solved via inclusion-exclusion in 2ⁿ n^O(1) time [Andreas Björklund et al., 2009]. Quantumly, there are faster algorithms for graph coloring with running time O(1.9140ⁿ) [Kazuya Shimizu and Ryuhei Mori, 2022] and for Set Cover with a small number of sets with running time O(1.7274ⁿ |ℱ|^O(1)) [Andris Ambainis et al., 2019]. In this paper, we give a quantum speedup for Set Partition, Set Cover, and Set Packing whenever there is a classical enumeration algorithm that lends itself to a quadratic quantum speedup, which, for any subinstance on a set X ⊆ U, enumerates at least one member of a k-partition, k-cover, or k-packing (if one exists) restricted to (or projected onto, in the case of k-cover) the set X in c^|X| n^O(1) time with c < 2. Our bounded-error quantum algorithm runs in time (2+c)^{n/2} n^O(1) for Set Partition, Set Cover, and Set Packing. It is obtained by combining three algorithms that have the best running time for some values of c. When c ≤ 1.147899, our algorithm is slightly faster than (2+c)^{n/2} n^O(1); when c approaches 1, it matches the O(1.7274ⁿ |ℱ|^O(1)) running time of [Andris Ambainis et al., 2019] for Set Cover when |ℱ| is subexponential in n. For covering, packing, and partitioning into maximal independent sets, maximal cliques, maximal bicliques, maximal cluster graphs, maximal triangle-free graphs, maximal cographs, maximal claw-free graphs, maximal trivially-perfect graphs, maximal threshold graphs, maximal split graphs, maximal line graphs, and maximal induced forests, we obtain bounded-error quantum algorithms with running times ranging from O(1.8554ⁿ) to O(1.9629ⁿ). Packing and covering by maximal induced matchings can be done quantumly in O(1.8934ⁿ) time. For Graph Coloring (covering with k maximal independent sets), we further improve the running time to O(1.7956ⁿ) by leveraging faster algorithms for coloring with a small number of colors to better balance our divide-and-conquer steps. For Domatic Number (packing k minimal dominating sets), we obtain a O((2-ε)ⁿ) running time for some ε > 0. Several of our results should be of interest to proponents of classical computing: - We present an inclusion-exclusion algorithm with running time O^*(∑_{i=0}^⌊αn⌋ binom(n,i)), which determines, for each X ⊆ U of size at most α n, 0 ≤ α ≤ 1, whether (X,ℱ) has a k-cover, k-partition, or k-packing. This running time is best-possible, up to polynomial factors. - We prove that for any linear-sized vertex subset X ⊆ V of a graph G = (V,E), the number of minimal dominating sets of G that are subsets of X is O((2-ε)^|X|) for some ε > 0.

Cite as

Serge Gaspers and Jerry Zirui Li. Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 69:1-69:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.ICALP.2024.69,
  author =	{Gaspers, Serge and Li, Jerry Zirui},
  title =	{{Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{69:1--69:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.69},
  URN =		{urn:nbn:de:0030-drops-202124},
  doi =		{10.4230/LIPIcs.ICALP.2024.69},
  annote =	{Keywords: Graph algorithms, quantum algorithms, graph coloring, domatic number, set cover, set partition, set packing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail